Subscribe to RSS
DOI: 10.1055/a-1929-4890
State-of-the-Art Advances in Enantioselective Transition-Metal-Mediated Reactions of Silacyclobutanes
Financial support from National Natural Science Foundation of China (No. 22072035), Zhejiang Provincial Natural Science Foundation of China (No. LY21B030007 and LY22B020006) are gratefully acknowledged.
Abstract
Studies on the enantioselective transformation of silacyclobutanes (SCBs) have become an emerging topic in the recent decade, due to the feature of high ring strain, and manageable Si–C bond cleavage and formation. This short review summarizes the remarkable achievements in the asymmetric transition-metal-mediated reaction of silacyclobutanes and benzosilacyclobutanes, resulting in carbon- or silicon-stereogenic organosilanes with functional substituents.
1 Introduction
2 Asymmetric Transition-Metal-Catalyzed Ring Expansion Reaction
3 Asymmetric Transition-Metal-Catalyzed Ring-Opening Reaction
4 Conclusion and Outlook
Key words
silacyclobutanes - benzosilacyclobutenes - transition metal - silicon–carbon cleavage and formation - silicon-stereogenic - organosilicon - ring-opening - ring expansionPublication History
Received: 23 July 2022
Accepted after revision: 23 August 2022
Accepted Manuscript online:
23 August 2022
Article published online:
21 September 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Čusak A. Chem. Eur. J. 2012; 18: 5800
- 1b Nakao Y, Sahoo AK, Imanaka H, Yada A, Hiyama T. Pure Appl. Chem. 2006; 78: 435
- 1c Suzawa K, Ueno M, Wheatley AE. H, Kondo Y. Chem. Commun. 2006; 42: 4850
- 1d Bai D, Han S, Lu Z.-H, Wang S. Can. J. Chem. 2008; 86: 230
- 1e Showell GA, Mills JS. Drug Discov. Today 2003; 8: 551
- 1f Tacke R, Becker B, Schomburg D. Appl. Organomet. Chem. 1989; 3: 133
- 1g Ma J.-H, Li L, Sun Y.-L, Xu Z, Bai X.-F, Yang K.-F, Cao J, Cui Y.-M, Yin G.-W, Xu L.-W. Sci. China Chem. 2020; 63: 1082 ; and referencescited therein
- 2a Gordon MS, Boatz JA, Walsh RJ. Phys. Chem. 1989; 93: 1584
- 2b Murakami M, Ishida N. Chem. Rev. 2021; 121: 264
- 3a Raabe G, Michl J. Chem. Rev. 1985; 85: 419
- 3b Auner N, Grobe J. Z. Anorg. Allg. Chem. 1983; 500: 132
- 4 Mu Q.-C, Chen J, Xia C.-G, Xu L.-W. Coord. Chem. Rev. 2018; 374: 93
- 5 Huang J, Liu F, Wu X, Chen J.-Q, Wu J. Org. Chem. Front. 2022; 9: 2840
- 6a Aborways MM, Moran WJ. J. Organomet. Chem. 2015; 797: 57
- 6b Dubac J, Mazerolles P, Lesbre M, Joly M. J. Organometal. Chem. 1970; 25: 367
- 6c Nguyen PT, Palmer WS, Woerpel KA. J. Org. Chem. 1999; 64: 1843
- 6d Seyferth D, Damrauer R, Andrews SB, Washburne SS. J. Am. Chem. Soc. 1971; 93: 3709
- 6e Seyferth D, Shih H.-M, Dubac J, Mazerolles P, Serres B. J. Organomet. Chem. 1973; 50: 39
- 6f Barton TJ, Lin J, Ijadi-Maghsoodi S, Power MD, Zhang Y, Ma Z, Shimizu H, Gordon MS. J. Am. Chem. Soc. 1995; 117: 11695
- 7 Sakurai H, Imai T. Chem. Lett. 1975; 891
- 8a Takeyama Y, Nozaki K, Matsumoto K, Oshima K, Utimoto K. Bull. Chem. Soc. Jpn. 1991; 64: 1461
- 8b Tanaka Y, Yamashita H, Tanaka M. Organometallics 1996; 15: 1524
- 8c Chauhan BP. S, Tanaka Y, Yamashita H, Tanaka M. Chem. Commun. 1996; 1207
- 8d Tanaka Y, Nishigaki A, Kimura Y, Yamashita M. Appl. Organomet. Chem. 2001; 15: 667
- 8e Tanaka Y, Yamashita M. Appl. Organomet. Chem. 2002; 16: 51
- 8f Hirano K, Yorimitsu H, Oshima K. Org. Lett. 2006; 8: 483
- 8g Hirano K, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2007; 129: 6094
- 8h Hirano K, Yorimitsu H, Oshima K. Org. Lett. 2008; 10: 2199
- 8i Weyenberg DR, Nelson LE. J. Org. Chem. 1965; 30: 2618
- 8j Hatanaka Y, Watanabe M, Onozawa S, Tanaka M, Sakurai H. J. Org. Chem. 1998; 63: 422
- 8k Denmark SE, Choi JY. J. Am. Chem. Soc. 121: 5821
- 8l Denmark SE, Wu Z. Org. Lett. 1999; 1: 1495
- 8m Denmark SE, Wang Z. Synthesis 2000; 999
- 9 Shintani R, Moriya K, Hayashi T. J. Am. Chem. Soc. 2011; 133: 16440
- 10 Shintani R, Moriya K, Hayashi T. Org. Lett. 2012; 14: 2902
- 11 Zhang J, Xu J.-Z, Zheng Z.-J, Xu Z, Cui Y.-M, Cao J, Xu L.-W. Chem. Asian J. 2016; 11: 2867
- 12 Chen H, Chen Y, Tang X, Liu S, Wang R, Hu T, Gao L, Song Z. Angew. Chem. Int. Ed. 2019; 58: 4695
- 13 Luo G, Chen L, Li Y, Fan Y, Wang D, Yang Y, Gao L, Jiang R, Song Z. Org. Chem. Front. 2021; 8: 5941
- 14 Wang X, Huang S.-S, Zhang F.-J, Xie J.-L, Li Z, Xu Z, Ye F, Xu L.-W. Org. Chem. Front. 2021; 8: 6577
- 15a Hirano K, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2007; 129: 6094
- 15b Saito S, Yoshizawa T, Ishigami S, Yamasaki R. Tetrahedron Lett. 2010; 51: 6028
- 16 Zhao W.-T, Gao F, Zhao D. Angew. Chem. Int. Ed. 2018; 57: 6329
- 17 Wang X.-B, Zheng Z.-J, Xie J.-L, Gu X.-W, Mu Q.-C, Yin G.-W, Ye F, Xu Z, Xu L.-W. Angew. Chem. Int. Ed. 2020; 59: 790
- 18a Ghosh P, Cusick JR, Inghrim J, Williams L. J. Org. Lett. 2009; 11: 4672
- 18b Felzmann W, Castagnolo D, Rosenbeiger D, Mulzer J. J. Org. Chem. 2007; 72: 2182
- 18c Adams CS, Weatherly CD, Burke EG, Schomaker JM. Chem. Soc. Rev. 2014; 43: 3136
- 19 Tang X, Zhang Y, Tang Y, Li Y, Zhou J, Wang D, Gao L, Su Z, Song Z. ACS Catal. 2022; 12: 5185
- 20 Wang Q, Zhong K.-B, Xu H, Li S.-N, Zhu W.-K, Ye F, Xu Z, Lan Y, Xu L.-W. ACS Catal. 2022; 12: 4571
- 21a Zhu S.-F, Zhou Q.-L. Acc. Chem. Res. 2012; 45: 1365
- 21b Qi X, Lan Y. Acc. Chem. Res. 2021; 54: 2905
- 21c Dong K, Liu M, Xu X. Molecules 2022; 27: 3088
- 22a Keipour H, Carreras V, Ollevier T. Org. Biomol. Chem. 2017; 15: 5441
- 22b Chen D, Zhu D.-X, Xu M.-H. J. Am. Chem. Soc. 2016; 138: 1498
- 22c Jagannathan JR, Fettinger JC, Shaw JT, Franz AK. J. Am. Chem. Soc. 2020; 142: 11674
- 22d Yang L, Ouyang J, Zou H, Zhu S.-F, Zhou Q.-L. J. Am. Chem. Soc. 2021; 143: 6401
- 22e Yasutomi Y, Suematsu H, Katsuki T. J. Am. Chem. Soc. 2010; 132: 4510
- 23 Huo J, Zhong K, Xue Y, Lyu M, Ping Y, Liu Z, Lan Y, Wang J. J. Am. Chem. Soc. 2021; 143: 12968
- 24 Huo J, Zhong K, Xue Y, Lyu M, Ping Y, Ouyang W, Liu Z, Lan Y, Wang J. Chem. Eur. J. 2022; 28: e202200191
- 25 Weyenberg DR, Nelson LE. J. Org. Chem. 1965; 30: 2618
- 26 Zhang Q.-W, An K, Liu L.-C, Zhang Q, Guo H, He W. Angew. Chem. Int. Ed. 2017; 56: 1125
- 27 An K, Ma W, Liu L, He T, Guan G, Zhang Q, He W. Nat. Commun. 2022; 13: 847
- 28 Zhang L, An K, Wang Y, Wu Y, Zhang X, Yu Z, He W. J. Am. Chem. Soc. 2021; 143: 3571
- 29 Zhang J, Yan N, Ju C.-W, Zhao D. Angew. Chem. Int. Ed. 2021; 60: 25723
- 30 Wang X, Li B, Ju C, Zhao D. Nat. Commun. 2022; 13: 3392
- 31 Ye F, Xu LW. Synlett 2021; 32: 1281
Enantioselective X–H insertion reviews: