Synlett, Inhaltsverzeichnis Synlett 2023; 34(03): 288-292DOI: 10.1055/a-1969-3992 letter Total Synthesis of Phellinus ribis Glycans with Immunostimulating Activities by an Orthogonal One-Pot Glycosylation Strategy Authors Jie Wan‡ Leilei Wang‡ Guozhi Xiao ∗ Artikel empfehlen Abstract Artikel einzeln kaufen(opens in new window) Alle Artikel dieser Rubrik(opens in new window) Abstract A total synthesis of nonasaccharide repeating units and shorter sequences from Phellinus ribis glycans with strong immunostimulating activities was achieved by an orthogonal one-pot glycosylation strategy based on an N-phenyltrifluoroacetimidate glycosylation, a Yu glycosylation, and an ortho-(1-phenylvinyl)benzoate glycosylation. The issues inherent to thioglycosides-based orthogonal one-pot glycosylations, such as aglycone transfer, are eliminated by this one-pot glycosylation strategy, which streamlines the chemical synthesis of glycans. Key words Key words Phellinus ribis - glycans - one-pot reaction - glycosylation - total synthesis - oligosaccharides Volltext Referenzen References and Notes 1 Varki A. Glycobiology 2017; 27: 3 2 Bertozzi CR, Kiessling LL. Science 2001; 291: 2357 3 Seeberger PH. Chem. Rev. 2021; 121: 3598 4 Crich D. J. Am. Chem. Soc. 2021; 143: 17 5 Krasnova L, Wong C.-H. J. Am. Chem. Soc. 2019; 141: 3735 6 Xiao G, Shao X, Zhu D, Yu B. Nat. Prod. Rep. 2019; 36: 769 7 Bennett CS, Galan MC. Chem. Rev. 2018; 118: 7931 8 Panza M, Pistorio SG, Stine KJ, Demchenko AV. Chem. Rev. 2018; 118: 8105 9 Leng W.-L, Yao H, He J.-X, Liu X.-W. Acc. Chem. Res. 2018; 51: 628 10 Peng P, Schmidt RR. Acc. Chem. Res. 2017; 50: 1171 11 Danishefsky SJ, Shue Y.-K, Chang MN, Wong C.-H. Acc. Chem. Res. 2015; 48: 643 12 Boltje TJ, Buskas T, Boons GJ. Nat. Chem. 2009; 1: 611 13 Zhu X, Schmidt RR. Angew. Chem. Int. Ed. 2009; 48: 1900 14 Ernst B, Magnani J. Nat. Rev. Drug Discovery 2009; 8: 661 15 Seeberger PH, Werz DB. Nature 2007; 446: 1046 16 Carbohydrate-Based Drug Discovery 2003 17 Liu Y, Wang F. Carbohydr. Polym. 2007; 70: 386 18a Kim G.-Y, Choi G.-S, Lee S.-H, Park Y.-M. J. Ethnopharmacol. 2004; 95: 69 18b Li G, Kim D.-H, Kim T.-D, Park B.-J, Park H.-D, Park J.-I, Na M.-K, Kim H.-C, Hong N.-D, Lim K, Hwang B.-D, Yoon W.-H. Cancer Lett. 2004; 216: 175 19 Kim D.-H, Yang B.-K, Jeong S.-C, Park J.-B, Cho S.-P, Das S, Yun J.-W, Song C.-H. Biotechnol. Lett. 2001; 23: 513 20 Ajith TA, Janardhanan KK. J. Ethnopharmacol. 2002; 81: 387 21 Kulkarni SS, Wang C.-C, Sabbavarapu NM, Podilapu AR, Liao P.-H, Hung S.-C. Chem. Rev. 2018; 118: 8025 22a Zhang Y, Hu Y, Liu S, He H, Sun R, Lu G, Xiao G. Chem. Sci. 2022; 13: 7755 22b Zhang Y, He H, Chen Z, Huang Y, Xiang G, Li P, Yang X, Lu G, Xiao G. Angew. Chem. Int. Ed. 2021; 60: 12597 22c He H, Xu L, Sun R, Zhang Y, Huang Y, Chen Z, Li P, Yang R, Xiao G. Chem. Sci. 2021; 12: 5143 22d Yang R, He H, Chen Z, Huang Y, Xiao G. Org. Lett. 2021; 23: 8257 22e Zhang Y, Chen Z, Huang Y, He S, Yang X, Wu Z, Wang X, Xiao G. Angew. Chem. Int. Ed. 2020; 59: 7576 22f Li P, He H, Zhang Y, Yang R, Xu L, Chen Z, Huang Y, Bao L, Xiao G. Nat. Commun. 2020; 11: 405 22g Zhang Y, Xiang G, He S, Hu Y, Liu Y, Xu L, Xiao G. Org. Lett. 2019; 21: 2335 22h Yang R, Sun X, Zhang Y, Xiao G. Org. Biomol. Chem. 2022; 20: 6755 23a Yu B, Sun J. Chem. Commun. 2010; 46: 4668 23b Yu B, Tao H. Tetrahedron Lett. 2001; 42: 2405 24a Yu B. Acc. Chem. Res. 2018; 51: 507 24b Li W, Yu B. Chem. Soc. Rev. 2018; 47: 7954 24c Li Y, Yang Y, Yu B. Tetrahedron Lett. 2008; 49: 3604 25 Premathilake HD, Mydock LK, Demchenko AV. J. Org. Chem. 2010; 75: 1095 26 Tetrasaccharide 3; Typical ProcedureA solution of 10 (162.0 mg, 0.077 mmol) in 1:1 MeOH–CH2Cl2 (2 mL) was adjusted to pH 12 by the addition of NaOMe, and the mixture was stirred overnight at rt. The mixture was then neutralized to pH 7 with 1 M aq HCl, filtered, and concentrated. The residue was purified by column chromatography [Sephadex LH 20, MeOH–CH2Cl2 (1:1)] to give an intermediate; yield: 116.0 mg (89%).A mixture of the intermediate (50.0 mg, 0.029 mmol) and 10% Pd/C (316.8 mg) in EtOAc (3 mL)–MeOH (7 mL)–H2O (0.7 mL)–HOAc (0.07 mL) was stirred under H2 at rt for 2 d, then filtered and concentrated in vacuo. The residue was purified over a Sephadex TM LH-20 column (H2O) to give 3 as a white solid; yield: 18.6 mg (81%); [α]D 25 –18.93 (c 0.120, H2O).1H NMR (400 MHz, D2O): δ = 4.72 (d, J = 8.0 Hz, 1 H), 4.51 (dd, J = 8.0, 6.4 Hz, 2 H), 4.45 (d, J = 8.0 Hz, 1 H), 4.23–4.16 (m, 2 H), 3.94–3.80 (m, 5 H), 3.76–3.57 (m, 6 H), 3.53–3.22 (m, 13 H), 3.00 (t, J = 7.5 Hz, 2 H), 1.71–1.62 (m, 4 H), 1.47–1.39 (m, 2 H). 13C NMR (151 MHz, D2O): δ = 102.88, 102.78, 102.57, 102.16, 84.31, 75.96, 75.66, 75.52, 75.47, 74.85, 74.81, 73.40, 73.01, 72.96, 72.80, 70.14, 69.51, 69.38, 69.26, 68.73, 68.54, 68.07, 60.63, 60.59, 39.32, 28.14, 26.43, 25.08, 22.05. HRMS (ESI): m/z [M + H]+ calcd for C29H54NO21: 752.3183; found: 752.3191.Hexasaccharide 2Prepared from 7, and purified over a Sephadex LH-20 column (H2O) as a white solid; yield: 35 mg (86%); [α]D 25 –28.68 (c 0.08, H2O). 1H NMR (400 MHz, D2O): δ = 4.73 (d, J = 8.0 Hz, 1 H), 4.55–4.48 (m, 4 H), 4.45 (d, J = 8.0 Hz, 1 H), 4.24–4.16 (m, 4 H), 3.94–3.81 (m, 7 H), 3.77–3.56 (m, 9 H), 3.53–3.43 (m, 9 H), 3.43–3.21 (m, 9 H), 2.99 (t, J = 7.5 Hz, 2 H), 1.72–1.60 (m, 4 H), 1.49–1.40 (m, 2 H). 13C NMR (201 MHz, D2O): δ = 103.05, 102.88, 102.86, 102.81, 102.69, 102.19, 84.20, 75.98, 75.89, 75.70, 75.64, 75.56, 75.54, 75.50, 74.91, 74.87, 74.81, 74.57, 73.44, 73.06, 73.05, 73.03, 73.00, 72.83, 70.17, 69.60, 69.55, 69.44, 69.38, 69.37, 68.80, 68.74, 68.57, 68.52, 67.97, 60.69, 39.37, 28.18, 26.50, 23.24, 22.09, 20.07. HRMS (ESI): m/z [M + H]+ calcd for C41H74NO31: 1076.4239; found: 1076.4240.Nonasaccharide 1Prepared from 21, and purified over a Sephadex LH-20 column (H2O) as a white solid; yield: 29 mg (75%); [α]D 25 –43.78 (c 0.08, H2O). 1H NMR (400 MHz, D2O): δ = 4.64 (d, J = 8.0 Hz, 1 H), 4.44–4.37 (m, 7 H), 4.35 (d, J = 8.0 Hz, 1 H), 4.13–4.08 (m, 5 H), 3.88–3.66 (m, 13 H), 3.63–3.45 (m, 16 H), 3.41–3.10 (m, 22 H), 2.89 (t, J = 7.5 Hz, 2 H), 1.62–1.50 (m, 4 H), 1.39–1.29 (m, 2 H). 13C NMR (201 MHz, D2O): δ = 106.29, 106.27, 106.18, 106.10, 105.99, 105.82, 105.64, 105.49, 87.49, 81.81, 81.65, 79.28, 79.24, 78.99, 78.86, 78.83, 78.80, 78.73, 78.20, 78.19, 78.17, 78.11, 78.08, 78.03, 77.85, 77.46, 77.32, 76.73, 76.40, 76.34, 76.31, 76.29, 76.19, 76.12, 73.45, 72.85, 72.73, 72.71, 72.69, 72.67, 72.04, 71.93, 71.26, 71.11, 63.99, 63.83, 63.23, 63.15, 42.64, 31.47, 29.72, 28.28, 25.38. HRMS (ESI): m/z [M + H]+ calcd for C59H104NO46: 1562.5824; found: 1562.5826. Zusatzmaterial Zusatzmaterial Supporting Information (PDF)