Synthesis, Inhaltsverzeichnis Synthesis 2023; 55(07): 1079-1088DOI: 10.1055/a-1979-8930 paper Hydroamination of Carbodiimides Catalyzed by Lithium Triethylborohydride Zonggang Du a Xi’an Aerospace Propulsion Test Technique Institute, 710100 Xi’an, P. R. China , Xin Wen b Inner Mongolia First Machinery Group Stock Co. Ltd, 014030 Baotou, P. R. China , Ziyuan Pang∗ c School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, P. R. China › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract Commercially available lithium triethylborohydride (LiHBEt3) with a lower load of 0.5 mol% acts as an efficient catalyst for the hydroamination of various carbodiimides. It achieved good functional group tolerance under mild and solvent-free conditions. The possible mechanism and pathways of LiHBEt3 catalyzing the hydroamination of various carbodiimides are proposed. Key words Key wordslithium triethylborohydride - catalysts - carbodiimide - hydroamination - guanidine Volltext Referenzen References 1a Nieto D, Bruña S, González-Vadillo AM, Perles J, Carrillo-Hermosilla F, Antiñolo A, Padrón JM, Plata GB, Cuadrado I. Organometallics 2015; 34: 5407 1b Thompson MR, Chourey K, Froelich JM, Erickson BK, VerBerkmoes NC, Hettich RL. Anal. Chem. 2008; 80: 9517 1c Trujillo C, Flood A, Sanchez-Sanz G, Twamley B, Rozas I. J. Chem. Inf. Model 2019; 59: 2479 1d Hatai J, Schmuck C. Acc. Chem. Res. 2019; 52: 1709 1e Lunk I, Litty FA, Hennig S, etter IR, Kotthaus J, Altmann KS, Ott G, Havemeyer A, Carrillo Garcia C, Clement B, Schade D. J: Med. Chem. 2020; 63: 425 1f Berlinck RG. Nat. Prod. Rep. 2002; 19: 617 1g Artim CM, Brown JS, Alabi CA. Anal. Chem. 2019; 91: 3118 1h Baraldi PG, Baraldi S, Saponaro G, Aghazadeh Tabrizi M, Romagnoli R, Ruggiero E, Vincenzi F, Borea PA, Varani K. J. Med. Chem. 2015; 58: 5355 2a Liu Q, Wang C, Zhang X, Xue M, Yao Y, Zhang Y, Shen Q. New J. Chem. 2016; 40: 10447 2b Menéndez-Rodríguez L, Tomás-Mendivil E, Francos J, Crochet P, Cadierno V, Antiñolo A, Fernández-Galán R, Carrillo-Hermosilla F. Organometallics 2015; 34: 2796 2c García-Álvarez R, Suárez FJ, Díez J, Crochet P, Cadierno V, Antiñolo A, Fernández-Galán R, Carrillo-Hermosilla F. Organometallics 2012; 31: 8301 2d Sola A, Tarraga A, Molina P. Dalton Trans. 2012; 41: 8401 2e Francos J, González-Liste PJ, Menéndez-Rodríguez L, Crochet P, Cadierno V, Borge J, Antiñolo A, Fernández-Galán R, Carrillo-Hermosilla F. Eur. J. Inorg. Chem. 2015; 393 2f Wong GF, Yeung LF, Tsoi HY, Chan HS, Chiang MH, Lee HK. Eur. J. Inorg. Chem. 2019; 98 2g Zhang X, Wang C, Qian C, Han F, Xu F, Shen Q. Tetrahedron 2011; 67: 8790 2h Qian C, Zhang X, Li J, Xu F, Zhang Y, Shen Q. Organometallics 2009; 28: 3856 3 Thomas EW, Nishizawa EE, Zimmermann DC, Williams DJ. J. Med. Chem. 1989; 32: 228 4 Ong TG, Yap GP, Richeson DS. J. Am. Chem. Soc. 2003; 125: 8100 5a Wu Y, Wang S, Zhang L, Yang G, Zhu X, Liu C, Yin C, Rong J. Inorg. Chim. Acta 2009; 362: 2814 5b Zhu X, Du Z, Xu F, Shen Q. J. Org. Chem. 2009; 74: 6347 5c Zhao B, Xiao Y, Yuan D, Lu C, Yao Y. Dalton Trans. 2016; 45: 3880 5d Cheng H, Xiao Y, Lu C, Zhao B, Wang Y, Yao Y. New J. Chem. 2015; 39: 7667 5e Xue M, Zheng Y, Hong Y, Yao Y, Xu F, Zhang Y, Shen Q. Dalton Trans. 2015; 44: 20075 5f Hong Y, Zheng Y, Xue M, Yao Y, Zhang Y, Shen Q. Z. Anorg. Allg. Chem. 2015; 641: 1230 5g Bhattacharjee J, Harinath A, Banerjee I, Nayek HP, Panda TK. Inorg. Chem. 2018; 57: 12610 5h Sheng W, Xu X, Zhou S, Zhang X, Huang Z, Du J, Zhang L, Wei Y, Zhu X, Cui P, Wang S. Organometallics 2020; 39: 4525 5i Gong C, Ding H, Lu C, Zhao B, Yao Y. Dalton Trans. 2017; 46: 6031 5j Liu H, Fridman N, Tamm M, Eisen MS. Organometallics 2017; 36: 3896 5k Yu L, Wang F, Wang H, Wang S, Wu Y, Gu X. J. Organomet. Chem. 2021; 934: 121661 5l Vardhanapu PK, Bheemireddy V, Bhunia M, Vijaykumar G, Mandal SK. Organometallics 2018; 37: 2602 5m Yu D, Tong H, Zhou M. Polyhedron 2020; 191: Article 114817 5n Elorriaga D, Carrillo-Hermosilla F, Antinolo A, Suarez FJ, Lopez-Solera I, Fernandez-Galan R, Villasenor E. Dalton Trans. 2013; 42: 8223 5o Du Z, Li WB, Zhu XH, Xu F, Shen Q. J. Org. Chem. 2008; 73: 8966 6a Zhang W.-X, Li D, Wang Z, Xi Z. Organometallics 2009; 28: 882 6b Wei Y, Wang S, Zhou S, Feng Z, Guo L, Zhu X, Mu X, Yao F. Organometallics 2015; 34: 1882 6c Baishya A, Barman MK, Peddarao T, Nembenna S. J. Organomet. Chem. 2014; 769: 112 6d Elorriaga D, Parra-Cadenas B, Antiñolo A, Carrillo-Hermosilla F, García-Álvarez J. Green Chem. 2022; 24: 800 6e De Tullio M, Hernan-Gomez A, Livingstone Z, Clegg W, Kennedy AR, Harrington RW, Antinolo A, Martinez A, Carrillo-Hermosilla F, Hevia E. Chem. Eur. J. 2016; 22: 17646 6f Mannepalli LK, Dupati V, Vallabha SJ, Sunkara VM. J. Chem. Sci. 2013; 125: 1339 6g Kantam ML, Priyadarshini S, Joseph PJ. A, Srinivas P, Vinu A, Klabunde KJ, Nishina Y. Tetrahedron 2012; 68: 5730 6h Shen H, Chan HS, Xie ZW. Organometallics 2006; 25: 5515 7a Ong T.-G, O’Brien JS, Korobkov I, Richeson DS. Organometallics 2006; 25: 4728 7b Li D, Guang J, Zhang WX, Wang Y, Xi Z. Org. Biomol. Chem. 2010; 8: 1816 8a Yao W, He L, Han D, Zhong A. J. Org. Chem. 2019; 84: 14627 8b Yao W, Li R, Yang J, Hao F. Catal. Sci. Technol. 2019; 9: 3874 8c Peng D, Zhang M, Huang Z. Chemistry 2015; 21: 14737 8d Wang Y, Li R, Guan W, Li Y, Li X, Yin J, Zhang G, Zhang Q, Xiong T, Zhang Q. Chem. Sci. 2020; 11: 11554 8e Manas MG, Sharninghausen LS, Balcells D, Crabtree RH. New J. Chem. 2014; 38: 1694 8f Zaranek M, Witomska S, Patroniak V, Pawluc P. Chem. Commun. 2017; 53: 5404 8g Skrodzki M, Witomska S, Pawluc P. Dalton Trans. 2018; 47: 5948 9 Kuciński K, Hreczycho G. Green Chem. 2019; 21: 1912 10 Bedi D, Brar A, Findlater M. Green Chem. 2020; 22: 1125 11 Ramachandran PV, Biswas D. Org. Lett. 2007; 9: 3025 Zusatzmaterial Zusatzmaterial Supporting Information