Subscribe to RSS
DOI: 10.1055/a-1988-1861
PTABS: A Unique Water-Soluble π-Acceptor Caged Phosphine
A.R.K. would like to thank the Science and Engineering Research Board (SERB), India and the Alexander von Humboldt Foundation for providing funds.
The authors would like to dedicate this account to Prof. Ian J. S. Fairlamb.
Abstract
Caged phosphines have unique structures and provide many advantageous properties that can be fine-tuned to develop efficient catalytic systems. Our research group recently introduced a highly water-soluble caged phosphine: PTABS (KapdiPhos), which is a derivatized form of triazaphosphaadamantane, and explored its applicability as a strongly π-accepting ligand in combination with metals such as Pd or Cu in a variety of cross-coupling reactions of biologically relevant halonucleosides as well as chloroheteroarenes. This account details our journey from ideation to the various catalytic applications of the ligands and eventually to its commercialization.
1 Introduction
2 Derivatization of PTA to PTABS and Its Applications
2.1 Nucleoside Modification
2.2 Heteroarene Modification
3 Conclusion
4 Summary and Future Outlook
Key words
caged phosphines - triazaphosphaadamantane - cross-coupling - palladium catalysis - nucleosides - heteroarenes - active pharmaceutical ingredientsPublication History
Received: 20 November 2022
Accepted after revision: 27 November 2022
Accepted Manuscript online:
27 November 2022
Article published online:
03 January 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Leenders SH. A. M, Gramage-Doria R, De Bruin B, Reek JN. H. Chem. Soc. Rev. 2015; 44: 433
- 1b Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127
- 2a Ingoglia BT, Wagen CC, Buchwald SL. Tetrahedron 2019; 75: 4199
- 2b Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
- 2c Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
- 3 Su B, Hartwig JF. Angew. Chem. Int. Ed. 2022; 61: e202113343
- 4 So C, Yuen O, Kwong F.-Y, Chen C, Pai C, Sun RW. Chem. J. Chin. Univ. 2020; 41: 2185
- 5 Hierso JC, Fihri A, Amardeil R, Meunier P, Doucet H, Santelli M, Ivanov VV. Org. Lett. 2004; 6: 3473
- 6 Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis . Kamer PC. J, van Leeuwen PW. N. M. John Wiley & Sons; Chichester: 2012
- 7 Shet H, Parmar U, Bhilare S, Kapdi AR. Org. Chem. Front. 2021; 8: 1599
- 8a Verkade JG, Kisanga PB. Tetrahedron 2003; 59: 7819
- 8b Verkade JG. Top. Curr. Chem. 2003; 223: 1
- 8c Verkade JG. Coord. Chem. Rev. 1994; 137: 233
- 8d Verkade JG. Acc. Chem. Res. 1993; 26: 483
- 9a Daigle DJ, Pepperman AB. Jr, Vail SL. J. Heterocycl. Chem. 1974; 11: 407
- 9b Daigle DJ, Decuir TJ, Robertson JB, Darensbourg DJ. Inorg. Synth. 1998; 32: 40
- 9c Allardyce CS, Dyson PJ, Ellis DJ, Heath SL. Chem. Commun. 2001; 1396
- 10a Tassone JP, England EV, MacQueen PM, Ferguson MJ, Stradiotto M. Angew. Chem. Int. Ed. 2019; 58: 2485
- 10b Clark JS. K, Ferguson MJ, McDonald R, Stradiotto M. Angew. Chem. Int. Ed. 2019; 58: 6391
- 11a Sawamura M. J. Synth. Org. Chem. Jpn. 2009; 67: 1125
- 11b Ochida A, Ito S, Miyahara T, Ito T, Sawamura M. Chem. Lett. 2006; 35: 294
- 12a Liedtke J, Loss S, Alcaraz G, Gramlich V, Grutzmacher H. Angew. Chem. Int. Ed. 1999; 38: 1623
- 12b Grutzmacher H, Liedtke J, Frasca G, Lang F, Pe N. Phosphorus, Sulfur Silicon Relat. Elem. 2002; 177: 1771
- 13a Fairlamb IJ. S, Kapdi AR, Lynam JM, Taylor RJ. K, Whitwood AC. Tetrahedron 2004; 60: 5711
- 13b Chaignon N, Fairlamb IJ. S, Kapdi AR, Taylor RJ. K, Whitwood AC. J. Mol. Catal. A: Chem. 2004; 219: 191
- 13c Fairlamb IJ. S, Kapdi AR, Lee A, Sanchez G, Lopez G, Serrano JL, Garcia L, Perez J, Perez E. Dalton Trans. 2004; 3970
- 13d Fairlamb IJ. S, Kapdi AR, Serrano JL, Taylor RJ. K, Sanchez G. Adv. Synth. Catal. 2006; 348: 405
- 13e Fairlamb IJ. S, Kapdi AR, Lee A. Org. Lett. 2004; 6: 4435
- 13f Burns MJ, Fairlamb IJ. S, Kapdi AR, Sehnal P, Taylor RJ. K. Org. Lett. 2007; 9: 5397
- 13g Kapdi AR, Whitwood AC, Burns MJ, Williamson DC, Williams TJ, Reay AJ, Holmes J, Fairlamb IJ. S. J. Am. Chem. Soc. 2013; 135: 8388
- 14a Ackermann L, Weschler C, Kapdi AR, Althammer A. Synlett 2010; 294
- 14b Ackermann L, Potukuchi H, Kapdi AR, Schulzke C. Chem. Eur. J. 2010; 16: 3300
- 14c Ackermann L, Kapdi AR, Schulzke C. Org. Lett. 2010; 12: 2298
- 14d Ackermann L, Kapdi AR, Kornhass C, Fenner S, Schulzke C. Chem. Eur. J. 2011; 17: 2965
- 14e Ackermann L, Barfusser S, Kornhass C, Kapdi AR. Org. Lett. 2011; 13: 3082
- 15a Santana MD, García-Bueno R, García G, Sánchez G, García J, Naik M, Pednekar S, Kapdi AR, Pérez J, García L, Pérez L, Serrano JL. Dalton Trans. 2012; 41: 3832
- 15b Serrano JL, Perez J, Garcia L, Sanchez G, Garica J, Tyagi K, Kapdi AR. RSC Adv. 2012; 2: 12237
- 15c Shah PA, Garcia J, Santana MD, Serrano JL, Naik M, Pednekar S, Kapdi AR. Tetrahedron 2013; 69: 1446
- 15d Kapdi AR, Karbelkar A, Naik M, Pednekar S, Fischer C, Schulzke C, Tromp M. RSC Adv. 2013; 3: 20905
- 16a Kim SC, Zhou L, Zhang W, O’Flaherty DK, Rondo-Brovetto V, Szostak JW. J. Am. Chem. Soc. 2020; 142: 2317
- 16b Saito Y, Hudson RH. E. J. Photochem. Photobiol. C 2018; 36: 48
- 16c Tanpure AA, Pawar MG, Srivatsan SG. Isr. J. Chem. 2013; 53: 366
- 17a Freeman S, Gardiner JM. Mol. Biotechnol. 1996; 5: 125
- 17b de Clercq E. Acta Microbiol. Acad. Sci. Hung. 1981; 28: 289
- 17c Mathe C, Gosselin G. Antiviral Res. 2006; 71: 276
- 17d Pruijssers AJ, Denison MR. Curr. Opin. Virol. 2019; 35: 57
- 18a Galmarini CM, Mackey JR, Dumontet C. Lancet Oncol. 2002; 3: P415
- 18b Damaraju VL, Damaraju S, Young JD, Baldwin SA, Mackey J, Sawyer MB, Cass CE. Oncogene 2003; 22: 7524
- 18c Garner AL. ACS Pharmacol. Transl. Sci. 2021; 4: 1714
- 18d Kapdi AR, Sanghvi YS. The Future of Drug Discovery: The Importance of Modified Nucleosides, Nucleotides, Oligonucleotides. In Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides. Kapdi AR, Sanghvi YS, Maiti D. Elsevier; New York: 2018: 1-18
- 19 Biteau N, Hervin V, Roy V, Agrofoglio L. Suzuki–Miyaura Cross-Coupling as a Synthetic Tool for Nucleoside and Nucleotide Modification. In Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides. Kapdi AR, Sanghvi YS, Maiti D. Elsevier; New York: 2018: 37-74
- 20 Ardhapure AV, Gholap A, Schulzke C, Maiti D, Kapdi AR. Stille Cross-Coupling Reaction: Early Years to the Current State-of-the-Art. In Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides. Kapdi AR, Sanghvi YS, Maiti D. Elsevier; New York: 2018: 19-36
- 21 Gonsalvi L, Peruzzini M. In Encyclopedia of Reagents for Organic Synthesis . Paquette LA. Wiley-Blackwell; Oxford: 2010: 1-4
- 22 Jaros SW, da Silva MF. C. G, Florek M, Smolenski P, Pombeiro AJ. L, Kirillov AM. Inorg. Chem. 2016; 55: 5886
- 23 Kapdi AR, Gayakhe V, Sanghvi YS, Garcia J, Lozano P, da Silva I, Perez J, Serrano JL. RSC Adv. 2014; 4: 17567
- 24 Fairlamb IJ. S, Taylor RJ. K, Serrano JL, Sanchez G. New. J. Chem. 2006; 30: 1695
- 25 Gayakhe V, Ardhapure A, Kapdi AR, Sanghvi YS, Serrano JL, Garcia L, Perez J, Garcia J, Fischer C, Schulzke C. J. Org. Chem. 2016; 81: 2713
- 26 Gayakhe V, Ardhapure A, Kapdi AR, Sanghvi YS, Serrano JL, Schulzke C. Curr. Protoc. Nucleic Acid Chem. 2016; 65: 1.37.1
- 27 Delbecq F, Len C. Application of Heck Alkenylation Reaction in Modified Nucleoside Synthesis. In Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides. Kapdi AR, Sanghvi YS, Maiti D. Elsevier; New York: 2018: 147-166
- 28 Ardhapure AV, Sanghvi YS, Kapdi AR, Garcia J, Sanchez G, Lozano P, Serrano JL. RSC Adv. 2015; 5: 24558
- 29 Rabasseda X. Drugs Today 2003; 39: 359
- 30 Bag SS, Jana S, Kasula M. Sonogashira Cross-Coupling: Alkyne-Modified Nucleosides and Their Applications. In Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides. Kapdi AR, Sanghvi YS, Maiti D. Elsevier; New York: 2018: 75-146
- 31a Schaper L.-A, Hock SJ, Herrmann WA, Kuhn FE. Angew. Chem. Int. Ed. 2013; 52: 270
- 31b Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
- 31c Zhong R, Pothig A, Feng Y, Riener K, Herrmann WA, Kuhn FE. Green Chem. 2014; 16: 4955
- 32a Prajapati D, Schulzke C, Kindermann M, Kapdi AR. RSC Adv. 2015; 5: 53073
- 32b Bangde P, Prajapati D, Dandekar-Jain P, Kapdi AR. ChemistrySelect 2018; 3: 5709
- 33 Bhilare S, Gayakhe V, Ardhapure AV, Sanghvi YS, Schulzke C, Borozdina Y, Kapdi AR. RSC Adv. 2016; 6: 83820
- 34a Hammud HH, Nemer G, Sawma W, Touma J, Barnabe P, Bou-Mouglabey Y, Ghannoum A, El-Hajjar J, Suta J. Chem. Biol. Interact. 2008; 173: 84
- 34b Storr TE, Baumann CG, Thatcher RJ, De Ornellas S, Whitwood AC, Fairlamb IJ. S. J. Org. Chem. 2009; 74: 5810
- 35a Gazvoda M, Virant M, Pinter B, Kosmrlj J. Nat. Commun. 2018; 9: 4814
- 35b Mohajer F, Heravi MM, Zadsirjan V, Poormohammad N. RSC Adv. 2021; 11: 6885
- 36 Laing KJ, Ouwendijk WJ, Koelle DM, Verjans GM. G. M. J. Infect. Dis. 2018; 218: S68
- 38a Lorion MM, Maindan K, Kapdi AR, Ackermann L. Chem. Soc. Rev. 2017; 46: 7399
- 38b Gupta G, Shah J, Vadagaonkar K, Lavekar A, Kapdi AR. Org. Biomol. Chem. 2019; 17: 7596
- 38c Lohr TL, Marks TJ. Nat. Chem. 2015; 7: 477
- 39 Shet H, Bhilare S, Sanghvi YS, Kapdi AR. Curr. Protoc. Nucleic Acid Chem. 2020; 83: e117
- 40 Heyduk E, Heyduk T. Anal. Chem. 2005; 77: 1147
- 41 Ardhapure AV, Gayakhe V, Bhilare S, Kapdi AR, Bag SS, Sanghvi YS, Gunturu KC. New J. Chem. 2020; 44: 14744
- 42 Strategies for Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides. Kapdi AR, Maiti D, Sanghvi YS. Elsevier; New York: 2018
- 43a Gadge ST, Bhanage BM. Synlett 2014; 25: 85
- 43b Mane RS, Bhanage BM. J. Org. Chem. 2016; 81: 1223
- 43c Markovic M, Lopatka P, Koos P, Gracza T. Org. Lett. 2015; 17: 5618
- 43d Rathod GK, Jain R. J. Org. Chem. 2022; 87: 8005
- 44a Mahesh S, Tang K.-C, Raj M. Molecules 2018; 23: 2615
- 44b Smith AB, Kürti L, Davulcu AH, Cho YS. Org. Process Res. Dev. 2007; 11: 19
- 44c Vaught JD, Bock C, Carter J, Fitzwater T, Otis M, Schneider D, Rolando J, Waugh S, Wilcox SK, Eaton BE. J. Am. Chem. Soc. 2010; 132: 4141
- 45 Vaught JD, Dewey T, Eaton BE. J. Am. Chem. Soc. 2004; 126: 11231
- 46 Ito T, Ueno Y, Komatsu Y, Matsuda A. Nucleic Acids Res. 2003; 31: 2514
- 47 Bhilare S, Shah J, Gaikwad V, Gupta G, Sanghvi YS, Bhanage BM, Kapdi AR. Synthesis 2019; 51: 4239
- 48 Wakao K, Watanabe T, Takadama T, Ui S, Shigemi Z, Kagawa H, Higashi C, Ohga R, Taira T, Fujimuro M. Biochem. Biophys. Res. Commun. 2014; 444: 135
- 49 Fulton B, Benfield P. Drugs 1996; 52: 450
- 50 Li M, Zhang H, Chen B, Wu Y, Guan L. Sci. Rep. 2018; 8: 3991
- 51a Ruth J. DNA 1984; 3: 123
- 51b Ruth J, Morgan C, Pasko A. DNA 1985; 4: 93
- 51c Jablonski E, Moomaw EW, Tullis RH, Ruth JL. Nucleic Acids Res. 1986; 14: 6115
- 51d Ruth JL, Jablonski E. Nucleosides and Nucleotides 1987; 6: 541
- 51e Ruth J. US5541313, 1996
- 51f Nonisotopic Probing, Blotting, and Sequencing . Kricka L. Academic Press; London: 1995
- 51g Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li V, Chen H, Mubareka S, Gubbay JB, Chan W. ACS Nano 2020; 14: 3822
- 52 Bhilare S, Kori S, Shet H, Balaram G, Mahendar K, Sanghvi YS, Kapdi AR. Synthesis 2020; 52: 3595
- 53 Walsh K, Sneddon HF, Moody CJ. ChemSusChem 2013; 6: 1455
- 54 Dorel R, Grugel CP, Haydl AM. Angew. Chem. Int. Ed. 2019; 58: 17118
- 55a Thomas AM, Sujatha A, Anilkumar G. Mini-Rev. Org. Chem. 2015; 12: 3
- 55b Ma D, Cai Q. Acc. Chem. Res. 2008; 41: 1450
- 55c Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054
- 56a Bioactive Heterocyclic Compounds Classes: Agrochemicals . Lamberth C, Dinges J. Wiley-VCH; Weinheim: 2012
- 56b Bioactive Heterocyclic Compounds Classes: Pharmaceuticals. Lamberth C, Dinges J. Wiley-VCH; Weinheim: 2013
- 57a Old DW, Wolfe JP, Buchwald SL. J. Am. Chem. Soc. 1998; 120: 9722
- 57b Wolfe JP, Buchwald SL. Angew. Chem. Int. Ed. 1999; 38: 2413
- 58 Hartwig JF, Kawatsura M, Hauck SI, Shaughnessy KH, Alcazar-Roman LM. J. Org. Chem. 1999; 64: 5575
- 59a Organ MG, Abdel-Hadi M, Avola S, Dubovyk I, Hadei N, Kantchev EA. B, O’Brien CJ, Sayah M, Valente C. Chem. Eur. J. 2008; 14: 2443
- 59b Lombardi C, Day J, Chandrasoma N, Mitchell D, Rodriguez MJ, Farmer JL, Organ MG. Organometallics 2017; 36: 251
- 60a Wheaton CA, Bow J.-PJ, Stradiotto M. Organometallics 2013; 32: 6148
- 60b Marion N, Navarro O, Mei J, Stevens ED, Scott NM, Nolan SP. J. Am. Chem. Soc. 2006; 128: 4101
- 61 Rataboul F, Zapf A, Jackstell R, Harkal S, Riermeier T, Monsees A, Dingerdissen U, Beller M. Chem. Eur. J. 2004; 10: 2983
- 62 Roiban G.-D, Mehler G, Reetz MT. Eur. J. Org. Chem. 2014; 2070
- 63 Bandaru SS. M, Bhilare S, Chrysochos N, Gayakhe V, Trentin I, Schulzke C, Kapdi AR. Org. Lett. 2018; 20: 473
- 64 Bhilare S, Bandaru SS. M, Kapdi AR, Sanghvi YS, Schulzke C. Curr. Protoc. Nucleic Acid Chem. 2018; 74: e58
- 65 Feng J, Zhang Z, Wallace MB, Stafford JA, Kaldor SW, Kassel DB, Navre M, Shi L, Skene RJ, Asakawa T, Takeuchi K, Xu R, Webb DR, Gwaltney SL. II. J. Med. Chem. 2007; 50: 2297
- 66a Kantarjian HM, Jain N, Advani A, Jabbour E, Gamelin E, Rasmussen E, Juan G, Anderson A, Chow VF, Friberg G, Vogl FD, Sekeres MA. Am. J. Hematol. 2017; 92: 660
- 66b Gao H, Huang K.-C, Yamasaki EF, Chan KK, Chohan L, Snapka RM. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 12168
- 66c abran K, Ehsanullah Ehsanulla, Hussain M, Farooq M, Babar M, Dogan MN, Lee D.-J. Weed Biol. Manage. 2012; 12: 136
- 67 Cristau H.-J, Cellier PP, Hamada S, Spindler J.-F, Taillefer M. Org. Lett. 2004; 6: 913
- 68 Marcum JS, McGarry KA, Ferber CJ, Clark TB. J. Org. Chem. 2016; 81: 7963
- 69a Zhang H, Ruiz-Castillo P, Buchwald SL. Org. Lett. 2018; 20: 1580
- 69b Burgos CH, Barder TE, Huang X, Buchwald SL. Angew. Chem. Int. Ed. 2006; 45: 4321
- 69c Anderson KW, Ikawa T, Tundel RE, Buchwald SL. J. Am. Chem. Soc. 2006; 128: 10694
- 69d Parrish CA, Buchwald SL. J. Org. Chem. 2001; 66: 2498
- 70 Platon M, Cui L, Mom S, Richard P, Saeys M, Hierso J.-C. Adv. Synth. Catal. 2011; 353: 3403
- 71 Lindstedt E, Stridfeldt E, Olofsson B. Org. Lett. 2016; 18: 4234
- 72 Gowrisankar S, Sergeev AG, Anbarasan P, Spannenberg A, Neumann H, Beller MA. J. Am. Chem. Soc. 2010; 132: 11592
- 73 Bhilare S, Bandaru SS. M, Shah J, Chrysochos N, Schulzke C, Sanghvi YS, Kapdi AR. J. Org. Chem. 2018; 83: 13088
- 74 Ahmad I, Shagufta A. Int. J. Pharm. Pharm. Sci. 2015; 7: 19
- 75 Wise H. Stud. Surf. Sci. Catal. 1991; 68: 497
- 76a Mukherjee N, Chatterjee T, Ranu BC. Eur. J. Org. Chem. 2015; 4018
- 76b Platon M, Wijaya N, Rampazzi V, Cui L, Rousselin Y, Saeys M, Hierso JC. Chem. Eur. J. 2014; 20: 12584
- 76c Gehrtz PH, Geiger V, Schmidt T, Sršan L, Fleischer I. Org. Lett. 2019; 21: 50
- 76d Oderinde MS, Frenette M, Robbins DW, Aquila B, Johannes JW. J. Am. Chem. Soc. 2016; 138: 1760
- 77 Bandaru SS. M, Bhilare S, Cardozo J, Chrysochos N, Schulzke C, Sanghvi YS, Gunturu KC, Kapdi AR. J. Org. Chem. 2019; 84: 8921
- 78 Terrier B, Pagnoux C, Perrodeau É, Karras A, Khouatra C, Aumaître O, Cohen P, Decaux O, Desmurs-Clavel H, Maurier F. Ann. Rheum. Dis. 2018; 77: 1150
- 79 Ilies L, Thomas SP, Tonks IA. Asian J. Org. Chem. 2020; 9: 324
- 80 Kaplaneris N, Ackermann L. Beilstein J. Org. Chem. 2022; 18: 86
- 81 Parmar U, Somvanshi D, Kori S, Desai AA, Dandela R, Maity DK, Kapdi AR. J. Org. Chem. 2021; 86: 8900
- 82 Crawford TH, Dalton JO. Arch. Biochem. Biophys. 1969; 131: 123
- 83 Shet H, Patel M, Waikar JM, More PV, Sanghvi YS, Kapdi AR. Chem. Asian J. 2022; in press
- 84 Chen WX, Shao LX. Org. Chem. 2012; 77: 9236-9239
- 85 Li J, Huang C, Wen D, Zheng Q, Tu B, Tu T. Org. Lett. 2021; 23: 687-691