Subscribe to RSS
DOI: 10.1055/a-1990-5276
Catalytic Enantioselective Inverse-Electron-Demand Diels–Alder Reaction of 2-Pyrones and Vinyl Selenides
We thank the National Natural Science Foundation of China (Grant No. 22071030), a program of Shanghai Science and Technology Committee (Grant No. 22JC1401102), and Fudan University (start-up grant) for financial support.
Abstract
We report an asymmetric inverse-electron-demand Diels–Alder reaction of electron-deficient 2-pyrones with various phenyl vinyl selenides catalyzed by a chiral bis(oxazoline)/Cu(OTf)2 complex. By using a side-arm-modified chiral bis(oxazoline)ligand, a variety of [2,2,2]-bicyclic lactones with phenyl selenide substituents were obtained in good to excellent yields (up to 99%) and enantioselectivities (up to 98% ee) under mild conditions. Based on this strategy, a highly concise enantioselective synthesis of the Corey lactone was accomplished.
Key words
asymmetric catalysis - inverse-electron-demand Diels–Alder reaction - pyrones - phenyl vinyl selenides - Corey lactoneSupporting Information
- Supporting information for
this article is available online at https:/
/doi.org/10.1055/s-0037-1611940.
- Supporting Information
- CIF File
Publication History
Received: 09 November 2022
Accepted after revision: 30 November 2022
Accepted Manuscript online:
30 November 2022
Article published online:
12 January 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Kagan HB, Riant O. Chem. Rev. 1992; 92: 1007
- 1b Winkler JD. Chem. Rev. 1996; 96: 167
- 1c Corey EJ. Angew. Chem. Int. Ed. 2002; 41: 1650
- 1d Nicolaou KC, Snyder SA, Montagnon TM, Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
- 1e Takao K.-i, Munakata R, Tadano K.-i. Chem. Rev. 2005; 105: 4779
- 2a Posner GH, Carry J.-C, Lee JK, Bull DS, Dai H. Tetrahedron Lett. 1994; 35: 1321
- 2b Posner GH, Dai H, Bull DS, Lee JK, Eydoux F, Ishihara Y, Welsh W, Pryor N, Petr S. J. Org. Chem. 1996; 61: 671
- 3a Markó IE, Evans GR, Declercq J.-P. Tetrahedron 1994; 50: 4557
- 3b Markó IE, Chellé-Regnaut I, Leroy B, Warriner SL. Tetrahedron Lett. 1997; 38: 4269
- 4 Li P, Yamamoto H. J. Am. Chem. Soc. 2009; 131: 16628
- 5a Li J.-L, Kang T.-R, Zhou S.-L, Li R, Wu L, Chen Y.-C. Angew. Chem. Int. Ed. 2010; 49: 6418
- 5b Li J.-L, Zhou S.-L, Chen P.-Q, Dong L, Liu T.-Y, Chen Y.-C. Chem. Sci. 2012; 3: 1879
- 5c Zhou Y, Zhou Z, Du W, Chen Y.-C. Acta Chim. Sinica 2018; 76: 382
- 6 Zhao S, Cheng S, Liu H, Zhang J, Liu M, Yuan W, Zhang X. Chem. Commun. 2020; 56: 4200
- 7 Peng H, Chen F.-E. Org. Biomol. Chem. 2017; 15: 6281
- 8a Corey EJ, Imwinkelried R, Pikul S, Xiang Y. J. Am. Chem. Soc. 1989; 111: 5493
- 8b Corey EJ, Ensley HE. J. Am. Chem. Soc. 1975; 97: 6908
- 8c Bindra JS, Grodski A, Schaaf TK, Corey EJ. J. Am. Chem. Soc. 1973; 95: 7522
- 8d Schaaf TK, Corey EJ. J. Org. Chem. 1972; 37: 2921
- 8e Corey EJ, Terashima S, Ramwell PW, Jessup R, Weinshenker NM, Floyd DM, Crosby GA. J. Org. Chem. 1972; 37: 3043
- 9 Zanoni G, Porta A, De Toma Q, Castronovo F, Vidari G. J. Org. Chem. 2003; 68: 6437
- 10a Johnson RA, Lincoln FH, Thompson JL, Nidy EG, Mizaak SA, Axen U. J. Am. Chem. Soc. 1977; 99: 4182
- 10b Whittaker N. Tetrahedron Lett. 1977; 18: 2805
- 11a Corey EJ, Moinet G. J. Am. Chem. Soc. 1973; 95: 6831
- 11b Corey EJ, Mann J. J. Am. Chem. Soc. 1973; 95: 6832
- 11c Corey EJ, Moinet G. J. Am. Chem. Soc. 1973; 95: 7185
- 11d Ogawa Y, Nunomoto M, Shibasaki M. J. Org. Chem. 1986; 51: 1625
- 12 Corey EJ, Weinshenker NM, Schaaf TK, Huber W. J. Am. Chem. Soc. 1969; 91: 5675
- 13 Doyle MP, Catino AJ. Tetrahedron: Asymmetry 2003; 14: 925
- 14 Zhu K, Hu S, Liu M, Peng H, Chen F.-E. Angew. Chem. Int. Ed. 2019; 58: 9923
- 15 Umekubo N, Suga Y, Hayashi Y. Chem. Sci. 2020; 11: 1205
- 16 Zhu K, Jiang M, Ye B, Zhang G.-T, Li W, Tang P, Huang Z, Chen F.-E. Chem. Sci. 2021; 12: 10362
- 17 Augustyns B, Maulide N, Markó IE. Tetrahedron Lett. 2005; 46: 3895
- 18 Liang X.-W, Zhao Y, Si X.-G, Xu M.-M, Tan J.-H, Zhang Z.-M, Zheng C.-G, Zheng C, Cai Q. Angew. Chem. Int. Ed. 2019; 58: 14562
- 19 Si X.-G, Zhang Z.-M, Zheng C.-G, Li Z.-T, Cai Q. Angew. Chem. Int. Ed. 2020; 59: 18412
- 20 Xu M.-M, You X.-Y, Zhang Y.-Z, Lu Y, Tan K, Yang L.-M, Cai Q. J. Am. Chem. Soc. 2021; 143: 8993
- 21 Lu Y, Xu M.-M, Zhang Z.-M, Zhang J, Cai Q. Angew. Chem. Int. Ed. 2021; 60: 26610
- 22 Xu M.-M, Yang L, Tan K, Chen X, Lu Q.-T, Houk KN, Cai Q. Nat. Catal. 2021; 4: 892
- 23 Zhang F, Ren B.-T, Zhou Y, Liu Y, Feng X. Chem. Sci. 2022; 13: 5562
- 24 Zhang F, Ren B.-T, Liu Y, Feng X. Org. Chem. Front. 2022; 9: 3956
- 25 Huang G, Guillot R, Kouklovsky C, Maryasin B, de la Torre A. Angew. Chem. Int. Ed. 2022; 61: e202208185
- 26 Huang G, Kouklovsky C, de la Torre A. J. Am. Chem. Soc. 2022; 144: 17803
- 27 Markó IE, Warriner SL, Augustyns B. Org. Lett. 2000; 2: 3123
- 28 Burch P, Binaghi M, Scherer M, Wentzel C, Bossert D, Eberhardt L, Neuburger M, Scheiffele P, Gademann K. Chem. Eur. J. 2013; 19: 2589
- 29a Zhou J, Tang Y. Chem. Soc. Rev. 2005; 34: 664
- 29b Liao S, Sun X.-L, Tang Y. Acc. Chem. Res. 2014; 47: 2260
- 29c Wang L, Zhou J, Tang Y. Chin. J. Chem. 2018; 36: 1123
- 30 CCDC 2210915 contains the supplementary crystallographic data for compound 3r. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 31a Krapcho AP, Gadamasetti G. J. Org. Chem. 1987; 52: 1880
- 31b Villhauer EB, Anderson RC. J. Org. Chem. 1987; 52: 1186
- 32 Fairlamb IJ. S, Dickinson JM, O’Connor R, Higson S, Grieveson L, Marin V. Bioorg. Med. Chem. 2002; 10: 2641
- 33 Methyl 3-Oxo-8-(phenylselanyl)-2-oxabicyclo[2.2.2]oct-5-ene-4-carboxylate (3a); Typical Procedure A mixture of Cu(OTf)2 (3.6 mg, 0.01 mmol), L11 (5.7 mg, 0.012 mmol), and freshly activated 3 Å MS (25.0 mg) in m-xylene (0.5 mL) was stirred at 25 °C for 2 h. The 2-pyrone 1a (0.2 mmol) was then added, and the mixture was stirred for 15 min before vinyl phenyl selenide (2a; 0.3 mmol) was added in one portion. When 1 was fully consumed (TLC; 4 h), the mixture was purified directly by flash column chromatography (silica gel) to give a white solid; yield: 64.7 mg (97%, 95% ee); [α]D 26 −84.70 (c 1.0, CHCl3). HPLC [CHIRALPAK IB N-5, hexane–i-PrOH (90:10), 1.0 mL/min, λ = 210 nm, 25 °C]: t R (minor) = 21.8 min; t R (major) = 19.5 min. FTIR (neat): 3061, 2945, 1732, 1576, 1476, 1437, 1366, 1352, 1327, 1288, 1275, 1086, 1016, 891, 797, 735, 588 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.56–7.54 (m, 2 H), 7.34–7.27 (m, 3 H), 6.95 (d, J = 7.6 Hz, 1 H), 6.56 (dd, J = 7.6, 5.2 Hz, 1 H), 5.26–5.24 (m, 1 H), 3.95 (dd, J = 9.2, 3.2 Hz, 1 H), 3.57 (s, 3 H), 2.95–2.88 (m, 1 H), 1.99–1.94 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 169.1, 167.2, 135.4, 131.9, 131.4, 129.3, 128.7, 128.6, 74.3, 60.1, 52.7, 37.2, 36.3. HRMS (ESI): m/z [M + H]+ calcd for C15H15O4Se: 339.0130; found: 339.0131.
For selected reviews, see: