Subscribe to RSS
DOI: 10.1055/a-2005-5006
Advances in Exploring Cyclopentadienyl (Cp) Rhodium Catalysts Featuring Diastereotopic or Enantiotopic Cp Faces for Asymmetric C–H Activation
We thank the National Natural Science Foundation of China for financial support (21971263).
Abstract
Chiral cyclopentadienyl rhodium (CpRh) complexes have emerged as a class of powerful catalysts for enantioselective C–H activation reactions. In terms of Cp ligand development, the mainstream is to design chiral ligands with C 2 symmetry in order to avoid the problem of Cp face selectivity during their metalation with rhodium. In recent years, CpRh catalysts with diastereotopic or enantiotopic Cp faces were also revealed and successfully applied in asymmetric C–H activation. These advances are summarized in this short review together with perspectives for their future development.
1 Introduction
2 Cp Ligands with Diastereotopic Cp Faces
3 Cp Ligands with Enantiotopic Cp Faces
4 Conclusion and Outlook
Key words
cyclopentadienyl - rhodium - asymmetric C–H activation - planar chiral - diastereotopic Cp face - enantiotopic Cp face - prochiral CpPublication History
Received: 09 December 2022
Accepted after revision: 02 January 2023
Accepted Manuscript online:
02 January 2023
Article published online:
31 January 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Zhang Q, Wu L.-S, Shi B.-F. Chem 2022; 8: 384
- 1b Zhan B.-B, Jin L, Shi B.-F. Trends Chem. 2022; 4: 220
- 1c Xu WW, Ye MC. Synthesis 2022; 54: 4773
- 1d Su B, Hartwig JF. Angew. Chem. Int. Ed. 2022; 61: e202113343
- 1e Zhang Q, Shi BF. Acc. Chem. Res. 2021; 54: 2750
- 1f Yoshino T, Matsunaga S. ACS Catal. 2021; 11: 6455
- 1g Vyhivskyi O, Kudashev A, Miyakoshi T, Baudoin O. Chem. Eur. J. 2021; 27: 1231
- 1h Liu CX, Zhang WW, Yin SY, Gu Q, You SL. J. Am. Chem. Soc. 2021; 143: 14025
- 1i Gu Q, Wu Z.-J, You S.-L. Bull. Chem. Soc. Jpn. 2021; 94: 641
- 1j Yoshino T, Satake S, Matsunaga S. Chem. Eur. J. 2020; 26: 7346
- 1k Thongpaen J, Manguin R, Basle O. Angew. Chem. Int. Ed. 2020; 59: 10242
- 1l Lapuh MI, Mazeh S, Besset T. ACS Catal. 2020; 10: 12898
- 1m Achar TK, Maiti S, Jana S, Maiti D. ACS Catal. 2020; 10: 13748
- 1n Woźniak Ł, Cramer N. Trends Chem. 2019; 1: 471
- 1o Loup J, Dhawa U, Pesciaioli F, Wencel-Delord J, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 12803
- 1p Liao G, Zhou T, Yao QJ, Shi BF. Chem. Commun. 2019; 55: 8514
- 1q Diesel J, Cramer N. ACS Catal. 2019; 9: 9164
- 1r Saint-Denis TG, Zhu RY, Chen G, Wu QF, Yu JQ. Science 2018; 359: eaao4798
- 1s Newton CG, Wang SG, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
- 1t Gao DW, Gu Q, Zheng C, You SL. Acc. Chem. Res. 2017; 50: 351
- 1u Zhu D.-Y, Chen P, Xia J.-B. ChemCatChem 2016; 8: 68
- 1v Zheng C, You S.-L. RSC Adv. 2014; 4
- 1w Giri R, Shi BF, Engle KM, Maugel N, Yu JQ. Chem. Soc. Rev. 2009; 38: 3242
- 2a Yang H, Gou B, Dai H, Gu Q, You S. Sci. China Chem. 2022; in press:
- 2b Davies C, Shaaban S, Waldmann H. Trends Chem. 2022; 4: 318
- 2c Wang Q, Liu C.-X, Gu Q, You S.-L. Sci. Bull. 2021; 66: 210
- 2d Mas-Rosello J, Herraiz AG, Audic B, Laverny A, Cramer N. Angew. Chem. Int. Ed. 2021; 60: 13198
- 2e Shaaban S, Davies C, Waldmann H. Eur. J. Org. Chem. 2020; 2020: 6512
- 2f Newton CG, Kossler D, Cramer N. J. Am. Chem. Soc. 2016; 138: 3935
- 2g Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
- 3 Ye B, Cramer N. Science 2012; 338: 504
- 4 Hyster TK, Knorr L, Ward TR, Rovis T. Science 2012; 338: 500
- 5 Halterman RL. Chem. Rev. 1992; 92: 965
- 6a Sun Y, Cramer N. Chem. Sci. 2018; 9: 2981
- 6b Smits G, Audic B, Wodrich MD, Corminboeuf C, Cramer N. Chem. Sci. 2017; 8: 7174
- 6c Ye B, Cramer N. J. Am. Chem. Soc. 2013; 135: 636
- 6d Cui WJ, Wu ZJ, Gu Q, You SL. J. Am. Chem. Soc. 2020; 142: 7379
- 7 Duchemin C, Smits G, Cramer N. Organometallics 2019; 38: 3939
- 8 Wang S.-G, Cramer N. ACS Catal. 2020; 10: 8231
- 9a Duchemin C, Cramer N. Chem. Sci. 2019; 10: 2773
- 9b Wang SG, Park SH, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 5459
- 10 Zheng J, Cui WJ, Zheng C, You SL. J. Am. Chem. Soc. 2016; 138: 5242
- 11 Pan C, Yin SY, Wang SB, Gu Q, You SL. Angew. Chem. Int. Ed. 2021; 60: 15510
- 12 Liang H, Vasamsetty L, Li T, Jiang J, Pang X, Wang J. Chem. Eur. J. 2020; 26: 14546
- 13a Li G, Yan X, Jiang J, Liang H, Zhou C, Wang J. Angew. Chem. Int. Ed. 2020; 59: 22436
- 13b Chen Z, Eriks K, Halterman RL. Organometallics 1991; 10: 3449
- 13c Chen Z, Halterman RL. Synlett 1990; 103
- 13d Halterman RL, Vollhardt KP. C, Welker ME, Blaeser D, Boese R. J. Am. Chem. Soc. 1987; 109: 8105
- 14 Jia ZJ, Merten C, Gontla R, Daniliuc CG, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2017; 56: 2429
- 15 Audic B, Wodrich MD, Cramer N. Chem. Sci. 2019; 10: 781
- 16 Pototskiy RA, Kolos AV, Nelyubina YV, Perekalin DS. Eur. J. Org. Chem. 2020; 2020: 6019
- 17 Trifonova EA, Ankudinov NM, Mikhaylov AA, Chusov DA, Nelyubina YV, Perekalin DS. Angew. Chem. Int. Ed. 2018; 57: 7714
- 18 Kolos AV, Nelyubina YV, Sundararaju B, Perekalin DS. Organometallics 2021; 40: 3712
- 19a Yan X, Jiang J, Wang J. Angew. Chem. Int. Ed. 2022; 61: e202201522
- 19b Uno M, Ando K, Komatsuzaki N, Takahashi S. J. Chem. Soc., Chem. Commun. 1992; 964
- 20 Farr CM. B, Kazerouni AM, Park B, Poff CD, Won J, Sharp KR, Baik MH, Blakey SB. J. Am. Chem. Soc. 2020; 142: 13996
- 21 Waldmann H, Antonchick AP, Shaaban S, Li H, Merten C. Synthesis 2021; 53: 2192
- 22 Shan G, Flegel J, Li H, Merten C, Ziegler S, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2018; 57: 14250
- 23 Li H, Gontla R, Flegel J, Merten C, Ziegler S, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2019; 58: 307
- 24 Shaaban S, Li H, Otte F, Strohmann C, Antonchick AP, Waldmann H. Org. Lett. 2020; 22: 9199
- 25 Shaaban S, Merten C, Waldmann H. Chem. Eur. J. 2022; 28: e202103365
- 26 Li H, Yan X, Zhang J, Guo W, Jiang J, Wang J. Angew. Chem. Int. Ed. 2019; 58: 6732