Subscribe to RSS
DOI: 10.1055/a-2020-9005
Non-Symmetric Bispyrrolotetrathiafulvalene Building Blocks
We thank the Independent Research Fund Denmark | Natural Sciences (FNU, project no. 9040-00169B) for funding this research.
Abstract
The use of redox-responsive compounds has received a lot of research attention in the field of molecular nanotechnology. Tetrathiafulvalene (TTF) is one of the key redox units that has been used to construct redox-active materials. A wide variety of TTF derivatives have been reported including the monopyrroloTTF (MPTTF) and the bispyrroloTTF (BPTTF) derivatives. However, the use of BPTTF as a building block is still limited, despite several favorable properties of its highly π-extended structure. Herein, the synthesis and functionalization of two novel non-symmetric BPTTF building blocks are reported. The key intermediates in these new synthetic protocols are 4,6-dimethyl-5-tosyl-5H-[1,3]dithiolo[4,5-c]pyrrole-2-thione and 5-(4-iodophenyl)-4,6-dimethyl[1,3]dithiolo[4,5-c]pyrrole-2-thione, which can be obtained in moderate to high yields in a two- or three-step synthetic procedure from 2,5-dimethyl-3,4-dithiocyanato-1-tosyl-1H-pyrrole and 1-(4-iodophenyl)-2,5-dimethyl-1H-pyrrole, respectively.
Key words
tetrathiafulvalene - pyrrole - orthogonal building block - Sonogashira coupling - alkylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2020-9005.
- Supporting Information
Publication History
Received: 04 January 2023
Accepted after revision: 26 January 2023
Accepted Manuscript online:
26 January 2023
Article published online:
07 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Canevet D, Sallé M, Zhang G, Zhang D, Zhu D. Chem. Commun. 2009; 2245
- 2 Schröder HV, Schalley CA. Beilstein J. Org. Chem. 2018; 14: 2163
- 3 Wudl F, Wobschall D, Hufnagel EJ. J. Am. Chem. Soc. 1972; 94: 670
- 4 Ferraris J, Cowan DO, Walatka V, Perlstein JH. J. Am. Chem. Soc. 1973; 95: 948
- 5a Segura JL, Martín N. Angew. Chem. Int. Ed. 2001; 40: 1372
- 5b Yamada J, Sugimoto T. TTF Chemistry: Fundamentals and Applications of Tetrathiafulvalene. Springer; Berlin: 2004
- 5c Jana A, Bähring S, Ishida M, Goeb S, Canevet D, Sallé M, Jeppesen JO, Sessler JL. Chem. Soc. Rev. 2018; 47: 5614
- 5d Bähring S, Root HD, Sessler JL, Jeppesen JO. Org. Biomol. Chem. 2019; 17: 2594
- 6a Chen W, Cava MP, Takassi MA, Metzger RM. J. Am. Chem. Soc. 1988; 110: 7903
- 6b Iyoda M, Kuwatani Y, Ueno N, Oda M. J. Chem. Soc., Chem. Commun. 1992; 158
- 6c Svenstrup N, Rasmussen KM, Hansen TK, Becher J. Synthesis 1994; 809
- 6d Simonsen KB, Svenstrup N, Lau J, Simonsen O, Mørk P, Kristensen GJ, Becher J. Synthesis 1996; 407
- 6e Zong K, Chen W, Cava MP, Rogers RD. J. Org. Chem. 1996; 61: 8117
- 6f Zong K, Cava MP. J. Org. Chem. 1997; 62: 1903
- 6g Jeppesen JO, Takimiya K, Jensen F, Brimert T, Nielsen K, Thorup N, Becher J. J. Org. Chem. 2000; 65: 5794
- 6h Yang S, Brooks AC, Martin L, Day P, Li H, Horton P, Male L, Wallis JD. CrystEngComm 2009; 11: 993
- 6i Solano MV, Nielsen MB, Jeppesen JO. J. Heterocycl. Chem. 2016; 53: 915
- 7a Williams JM, Schultz AJ, Geiser U, Carlson KD, Kini AM, Wang HG, Kwok W.-K, Whangbo M.-H, Schirber JE. Science 1991; 252: 1501
- 7b Avarvari N, Wallis JD. J. Mater. Chem. 2009; 19: 4061
- 7c Jin S, Sakurai T, Kowalczyk T, Dalapati S, Xu F, Wei H, Chen X, Gao J, Seki S, Irle S, Jiang D. Chem. Eur. J. 2014; 20: 14608
- 7d Suemune T, Sonoda K, Suzuki S, Sato H, Kusamoto T, Ueda A. J. Am. Chem. Soc. 2022; 144: 21980
- 7e Donoshita M, Yoshida Y, Maesato M, Kitagawa H. J. Am. Chem. Soc. 2022; 144: 17149
- 8a Pop F, Avarvari N. Chem. Commun. 2016; 52: 7906
- 8b Marcovicz C, Ferreira RC, Santos AB. S, Reyna AS, de Araújo CB, Malvestiti I, Falcão EH. L. Chem. Phys. Lett. 2018; 702: 16
- 8c Pop F, Zigon N, Avarvari N. Chem. Rev. 2019; 119: 8435
- 8d McNamara LE, Boyn J.-N, Melnychuk C, Anferov SW, Mazziotti DA, Schaller RD, Anderson JS. J. Am. Chem. Soc. 2022; 144: 16447
- 8e Boyn J.-N, McNamara LE, Anderson JS, Mazziotti DA. J. Phys. Chem. A 2022; 126: 3329
- 9a Wenger S, Bouit P.-A, Chen Q, Teuscher J, Censo DD, Humphry-Baker R, Moser J.-E, Delgado JL, Martín N, Zakeeruddin SM, Grätzel M. J. Am. Chem. Soc. 2010; 132: 5164
- 9b Amacher A, Yi C, Yang J, Bircher MP, Fu Y, Cascella M, Grätzel M, Decurtins S, Liu S.-X. Chem. Commun. 2014; 50: 6540
- 9c Geng Y, Pop F, Yi C, Avarvari N, Grätzel M, Decurtins S, Liu S.-X. New J. Chem. 2014; 38: 3269
- 9d Giribabu L, Duvva N, Singh SP, Han L, Bedja IM, Gupta RK, Islam A. Mater. Chem. Front. 2017; 1: 460
- 9e Zhu Y, Zhao L, Du Z, Chen G, Li Y, Wang L, Xiao X. Synth. Met. 2021; 282: 116946
- 10a Jensen LG, Nielsen KA, Breton T, Sessler JL, Jeppesen JO, Levillain E, Sanguinet L. Chem. Eur. J. 2009; 15: 8128
- 10b Jia W, Bandodkar AJ, Valdés-Ramírez G, Windmiller JR, Yang Z, Ramírez J, Chan G, Wang J. Anal. Chem. 2013; 85: 6553
- 10c Salinas Y, Solano MV, Sørensen RE, Larsen KR, Lycoops J, Jeppesen JO, Martínez-Máñez R, Sancenón F, Marcos MD, Amorós P, Guillem C. Chem. Eur. J. 2014; 20: 855
- 10d Bähring S, Martín-Gomis L, Olsen G, Nielsen KA, Kim DS, Duedal T, Sastre-Santos Á, Jeppesen JO, Sessler JL. Chem. Eur. J. 2016; 22: 1958
- 10e Wu Y, Wu J, Lin Y, Liu J, Pan X, He X, Bi K, Lei M. Adv. Compos. Hybrid Mater. 2023; 6: 4
- 11a Wang E, Li H, Hu W, Zhu D. J. Polym. Sci., Part A: Polym. Chem. 2006; 44: 2707
- 11b Giacalone F, Herranz M, Grüter L, González MT, Calame M, Schönenberger C, Arroyo CR, Rubio-Bollinger G, Vélez M, Agraït N, Martín N. Chem. Commun. 2007; 4854
- 11c Kay NJ, Higgins SJ, Jeppesen JO, Leary E, Lycoops J, Ulstrup J, Nichols RJ. J. Am. Chem. Soc. 2012; 134: 16817
- 11d O’Driscoll LJ, Hamill JM, Grace I, Nielsen BW, Almutib E, Fu Y, Hong W, Lambert CJ, Jeppesen JO. Chem. Sci. 2017; 8: 6123
- 12a Huang TJ, Brough B, Ho C.-M, Liu Y, Flood AH, Bonvallet PA, Tseng H.-R, Stoddart JF, Baller M, Magonov S. Appl. Phys. Lett. 2004; 85: 5391
- 12b Green JE, Wook Choi J, Boukai A, Bunimovich Y, Johnston-Halperin E, DeIonno E, Luo Y, Sheriff BA, Xu K, Shik Shin Y, Tseng H.-R, Stoddart JF, Heath JR. Nature 2007; 445: 414
- 12c Chen Q, Sun J, Li P, Hod I, Moghadam PZ, Kean ZS, Snurr RQ, Hupp JT, Farha OK, Stoddart JF. J. Am. Chem. Soc. 2016; 138: 14242
- 12d Schröder HV, Stein F, Wollschläger JM, Sobottka S, Gaedke M, Sarkar B, Schalley CA. Angew. Chem. Int. Ed. 2019; 58: 3496
- 12e Jensen M, Olsen G, Kristensen R, Takimiya K, Jeppesen JO. Eur. J. Org. Chem. 2019; 7532
- 12f Kilde MD, Kristensen R, Olsen G, Jeppesen JO, Nielsen MB. Eur. J. Org. Chem. 2019; 5532
- 12g Kristensen R, Neumann MS, Andersen SS, Stein PC, Flood AH, Jeppesen JO. Org. Biomol. Chem. 2022; 20: 2233
- 13 Gopee H, Nielsen KA, Jeppesen JO. Synthesis 2005; 1251
- 14a Giffard M, Frère P, Gorgues A, Riou A, Roncali J, Toupet L. J. Chem. Soc., Chem. Commun. 1993; 944
- 14b Li Z.-T, Stein PC, Svenstrup N, Lund KH, Becher J. Angew. Chem., Int. Ed. Engl. 1995; 34: 2524
- 14c Ballardini R, Balzani V, Becher J, Fabio AD, Gandolfi MT, Mattersteig G, Nielsen MB, Raymo FM, Rowan SJ, Stoddart JF, White AJ. P, Williams DJ. J. Org. Chem. 2000; 65: 4120
- 15a See ref. 6g
- 15b Nielsen MB, Jeppesen JO, Lau J, Lomholt C, Damgaard D, Jacobsen JP, Becher J, Stoddart JF. J. Org. Chem. 2001; 66: 3559
- 16 O’Driscoll LJ, Andersen SS, Solano MV, Bendixen D, Jensen M, Duedal T, Lycoops J, van der Pol C, Sørensen RE, Larsen KR, Myntman K, Henriksen C, Hansen SW, Jeppesen JO. Beilstein J. Org. Chem. 2015; 11: 1112
- 17 Wuts PG. M. Greene’s Protective Groups in Organic Synthesis, 5th ed. Wiley; New York: 2014
- 18 Sinha MK, Reany O, Parvari G, Karmakar A, Keinan E. Chem. Eur. J. 2010; 16: 9056
- 19 Scates BA, Lashbrook BL, Chastain BC, Tominaga K, Elliott BT, Theising NJ, Baker TA, Fitch RW. Biorg. Med. Chem. 2008; 16: 10295
- 20 Arnaud A, Belleney J, Boué F, Bouteiller L, Carrot G, Wintgens V. Angew. Chem. Int. Ed. 2004; 43: 1718
- 21 Gottlieb HE, Kotlyar V, Nudelman A. J. Org. Chem. 1997; 62: 7512
- 22 The purity was determined by TLC and crude 1H NMR spectroscopy.
- 23 Signal(s) missing due to overlap or low intensity.
The first redox potentials (E½1, vs Ag/AgCl) for 1 = +0.34 V, 2 (SMe, NH) = +0.44 V, 3 (SMe, NH) = +0.42 V, 5 (NH) = +0.38 V, 6 (NH) = +0.33 V.