Key words palladium catalyst - C–N bond activation - amides - isocyanates - elimination - rearrangement
Although a myriad of methods are available for constructing frameworks of a wide variety
of molecules, the development of methods for modifying them lags far behind, despite
the great demand for late-stage molecular transformations in organic synthesis.[1 ] The difficulty of editing molecular frameworks is largely attributed to the inertness
of chemical bonds that constitute the frameworks, as represented by C–C bonds. However,
advancements in activating strong bonds by transition metal catalysts[2 ] as well as the renaissance associated with photochemistry has allowed notable developments
of methods for editing molecular frameworks. Methods that have been reported to date
can be classified into three types: (1) insertion,[3 ]
[4 ]
[5 ] (2) deletion,[6,7 ] and (3) substitution[8 ] (Scheme [1a ]). Insertion is defined as a class of reactions in which an atom or a group is inserted
into the chemical bond that constitutes the framework of the substrate. Deletion is
the reverse process of insertion, in which a new chemical bond is forged by the ejection
of an atom or a group from the substrate with the remaining fragments being recombined.
Decarbonylation[6a ] and decarboxylation[6b ]
[c ] reactions are typical examples of deletion reactions. Substitution is a type of
transformation that is a combination of deletion and insertion. Namely, an atom or
a group is removed from the substrate backbone and a new component is inserted into
the same site. A new type of editing of molecular frameworks would be ‘cut-and-paste’
type reactions, in which a fragment of the molecular skeleton is removed and is then
attached to a different site in the molecule, thus resulting in the construction of
a new molecular framework. Although this mode of editing is attractive, to the best
of our knowledge, it has not been reported as a single-step transformation.[9 ]
Scheme 1 Types of editing of molecular frameworks and migratory unimolecular fragment coupling
(UFC) of amides; dcype = 1,2-bis(dicyclohexylphosphino)ethane
Scheme 2 Pd-catalyzed unimolecular fragment coupling with translocation of an amide group
Our laboratory recently reported the palladium-catalyzed unimolecular fragment coupling
(UFC) of amides, in which an amide moiety is deleted from the substrate (Scheme [1b ], top).[6e ] In this reaction, an amide group is eliminated in the form of an isocyanate. In
our preliminary study, we also found that when amide substrates bearing an unprotected
alcohol group are used, the eliminated isocyanate is trapped by the alcohol moiety
(Scheme [1b ], bottom). The overall transformation is the catalytic translocation of an amide
group, which can be viewed as a cut-and-paste type editing of a molecular framework.
We report herein on a detailed investigation of this migratory UFC reaction of amides.
Scheme 3 Scope of Pd-catalyzed migratory UFC of N -allylamides. Reagents and conditions : 1 (0.10 mmol), Pd(PPh3 )4 (0.010 mmol), dcype (0.010 mmol), toluene (1.0 mL), 100 °C, 18 h. a Run on a 0.050 mmol scale. b Run for 12 h at 140 °C. c Run on a 0.20 mmol scale. d Run on a 0.15 mmol scale. e Run on a 0.12 mmol scale.
In our previous investigation related to the palladium-catalyzed UFC of amides,[6e ] we found that when an N -allylthiocarbamate bearing a primary alcohol group (e.g., 1a ) is used as a substrate, the eliminated isocyanate is trapped by the hydroxy group,
resulting in the formation of the carbamate product 2a in 68% yield (Scheme [2 ]).
On the basis of these preliminary results, we examined the UFC reactions using N -allylamides bearing various tethered nucleophiles (Scheme [3 ]). Regarding an allylic fragment, in addition to cinnamyl derivative 1a , non-substituted allyl (1b ) and 2-methylallyl (1c ) groups can also be used in the migratory UFC to form the corresponding N -allylthioesters 2b and 2c , respectively. Concerning the linker to tether a primary alcohol, a longer alkyl
chain (1d ) and a meta -phenylene group (1e ) were also found to be acceptable, affording the translocated products 2d and 2e , respectively. We also found that this migratory UFC is not limited to C–S bond formation
using N -allylthiocarbamates, but C–N bond formation using urea derivatives is also possible.
For example, N -allylurea with a secondary alcohol moiety (i.e., 1f ) participated in this reaction to yield carbamate 2f in 59% yield. Regarding the nature of the tethered nucleophile, not only primary
alcohols, but also phenolic hydroxy (1g ) and aniline (1h ) groups could be used to successfully capture the eliminated isocyanate (2g : 40%; 2h : 77% yield). We also examined the effect of the nitrogen substituent that is to be
eliminated. Although we routinely used p -CF3 C6 H4 as a migrating group based on its efficient elimination behavior in our previous
UFC studies, a simple phenyl group also functioned successfully, as exemplified by
an efficient migratory UFC of 1h and 1i . On the other hand, the reaction did not proceed efficiently when an electron-donating
methoxy group was introduced to the migrating group (i.e., 1j ), as was observed in our previous UFC reaction.[6e ]
[10 ]
We next investigated whether this catalytic migratory UFC could be applied to C–C
bond formation. Our previous study revealed that the use of N -allyl-β-ketoamide as a substrate allowed for the UFC of amides to form a C–C bond.[6e ] Therefore, we envisioned that N -allyl-β-ketoamide with a primary alcohol moiety would also participate in this migratory
UFC reaction with the formation of a C–C bond. When ketoamide 3 was reacted under the conditions used for C–C bond forming UFC reaction,[6e ] the expected amide translocation product 4 was formed, along with a doubly allylated product 5 , which was likely formed by further reaction of 4 with another π-allylpalladium species (Scheme [4 ]). In addition, the O -allylated product 6 was formed as a minor product, presumably because the UFC of ketoamide substrates
is slower than that for thiocarbamate or urea substrates 1 ,[6e ] thereby allowing the π-allylpalladium intermediate to react with a tethered alcohol.
Compounds 4 /5 /6 were obtained in a combined yield of 83% and a ratio of 4.6:1:2.5.
In our previous deisocyanative UFC, the trimerization of the eliminated isocyanate
to form a stable cyclic trimer (i.e., isocyanurate) serves as one of the driving forces
for this reaction.[6e ] In contrast, in this migratory UFC, the eliminated isocyanate is captured by a tethered
nucleophile before it trimerizes. To obtain insights into the thermodynamics of these
processes, the free energies of starting thiocarbamate 1a , UFC product 7 , isocyanate 8 , cyclic trimer 9 , and migratory UFC product 2a were estimated by DFT calculations (Figure [1 ]). Although the UFC process of 1a to afford 7 and 8 is endothermic by 0.9 kcal/mol, the subsequent trimerization of 8 to 9 renders the overall process exothermic by 6.5 kcal/mol. The formation of 2a by the intramolecular capture of 8 provides an even greater free energy gain of 17.0 kcal/mol, thereby making the migratory
UFC a highly favored pathway (ΔG = −16.1 kcal/mol).
Figure 1 Relative free energy changes in UFC and migratory UFC of 1a
In conclusion, we have reported on the palladium-catalyzed migratory UFC of N -allylamides bearing a tethered nucleophile, such as an alcohol. In this reaction,
an amide moiety located in the middle of the molecular framework is removed and transferred
to the end of the molecule. Additional developments of catalytic methods for use in
this type of cut-and-paste editing of molecular frameworks is currently underway in
our laboratory.
Scheme 4 Pd-catalyzed C–C bond forming migratory UFC using β-keto amides. Reagents and conditions : 3 (0.10 mmol), Pd(PPh3 )4 (0.010 mmol), dcype (0.010 mmol), K3 PO4 (0.10 mmol), THF (1.0 mL), 100 °C, 6 h.
1 H, 13 C, and 19 F NMR spectra were recorded on a JEOL ECS-400 spectrometer in CDCl3 . The chemical shifts in the 1 H NMR spectra were recorded relative to CHCl3 (δ = 7.26). The chemical shifts in the 13 C NMR spectra were recorded relative to CDCl3 (δ = 77.16). The chemical shifts in the 19 F NMR spectra were recorded relative to perfluorobenzene (δ = –163.0). IR spectra
were obtained using a JASCO FT/IR-4200 spectrometer. Absorption (cm–1 ) is reported with the following relative intensities: s (strong), m (medium), or
w (weak). HRMS was carried out using a JEOL JMS-T100LP spectrometer. Melting points
were determined using a Yamato melting point apparatus. Column chromatography was
performed with Biotage Isolera® equipped with Biotage SNAP Ultra or SNAP Isolute NH2 Cartridge. DFT calculations were performed with the Gaussian 09 (G09RevD.01) program.
Geometry optimizations and frequency calculations for all reported structures were
performed using the M06-2X density functional with the 6-31G(d,p) basis set. Compounds
1a , 1f , and 1g were prepared according to a previously reported procedure.[6e ] See the Supporting Information (SI) for details.
S -[4-(2-Hydroxyethoxy)phenyl] Allyl[4-(trifluoromethyl)phenyl]carbamothioate (1b);
Typical Procedure
S -[4-(2-Hydroxyethoxy)phenyl] Allyl[4-(trifluoromethyl)phenyl]carbamothioate (1b);
Typical Procedure
A 100 mL two-necked flask with a magnetic stirring bar was evacuated and backfilled
with nitrogen three times. After addition of triphosgene (1.4 g, 5.0 mmol) and anhydrous
EtOAc (30 mL) to the flask, the mixture was cooled at 0 °C and pyridine (1.6 mL, 20
mmol) was slowly added to the flask. After the mixture had been stirred at 0 °C for
15 min, N -allyl-4-(trifluoromethyl)aniline (2.4 g, 10 mmol) was slowly added to the mixture.
The mixture was warmed to rt and stirred for 6 h. The resulting mixture was carefully
quenched by the addition of 1 M aq HCl (15 mL) and was extracted with EtOAc (3 × 20
mL). The organic layer was washed with H2 O and then dried over Na2 SO4 . After filtration, the filtrate was concentrated under reduced pressure to give the
corresponding carbamoyl chloride as a dark oil. This material was used in the next
step without further purification. 4-Mercaptophenol (1.4 g, 10 mmol) and Et3 N (3.4 mL, 20 mmol) were dissolved in THF (20 mL) and the mixture was stirred at rt
for 15 min. To this mixture, carbamoyl chloride and DMAP (0.20 g, 1.5 mmol) were then
added and the resulting solution was stirred at rt for 12 h. The resulting mixture
was quenched with H2 O (10 mL) and extracted with EtOAc (3 × 20 mL). The organic layer was washed with
H2 O (20 mL) and dried over Na2 SO4 . After filtration, the filtrate was concentrated under reduced pressure. The residue
was purified by column chromatography (silica gel, hexane/EtOAc 1:1) to afford the
crude S -(4-hydroxyphenyl) allyl[4-(trifluoromethyl)phenyl]carbamothioate as a yellow solid
(2.0 g, ca. 60% yield), which was used in the next step without further purification.
The corresponding amide (0.36 g, 1.0 mmol) was added portionwise to a suspension of
NaH (48 mg, 1.2 mmol, 60% dispersion in mineral oil) in THF (17 mL); 2-bromoethanol
(0.10 mL, 1.5 mmol) was then added dropwise. The reaction mixture was stirred at rt
for 12 h, and then H2 O (5.0 mL) was added. The mixture was extracted with EtOAc (3 × 10 mL), and the combined
extracts were washed with brine (10 mL), dried over anhydrous Na2 SO4 , and concentrated. The resulting crude product was purified by flash chromatography
(silica gel, hexane/EtOAc 1:1) to give 1b .
Yield: 0.21 g (53%); white solid; mp 99 °C; Rf
= 0.17 (silica gel, hexane/ EtOAc 1:1).
IR (KBr): 3488 s, 1651 s, 1592 s, 1496 s, 1377 s, 1324 s, 1256 m, 1177 m, 1105 m,
1068 s, 1033 m, 937 m, 830 s, 754 m, 702 m, 683 m, 561 m cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 7.71 (d, J = 8.4 Hz, 2 H), 7.48 (d, J = 8.4 Hz, 2 H), 7.36 (dt, J = 9.6, 2.5 Hz, 2 H), 6.91 (dt, J = 9.5, 2.5 Hz, 2 H), 5.87 (dd, J = 16.8, 10.2 Hz, 1 H), 5.19–5.10 (m, 2 H), 4.34 (d, J = 6.4 Hz, 2 H), 4.05 (t, J = 4.6 Hz, 2 H), 3.92 (t, J = 4.4 Hz, 2 H), 2.31 (s, 1 H).
13 C NMR (100.53 MHz, CDCl3 ): δ = 167.9, 159.8, 143.6, 137.3, 132.2, 130.7 (q, J
CF = 32.6 Hz), 129.8, 126.7 (q, J
CF = 3.8 Hz), 123.8 (q, J
CF = 272.2 Hz), 119.9, 119.2, 115.3, 69.3, 61.3, 53.8.
19 F NMR (376 MHz, CDCl3 ): δ = –63.8.
MS: m /z (%) = 397 (34) [M+ ], 229 (14), 228 (92), 169 (11), 126 (11), 125 (89), 97 (12), 45 (25), 42 (10), 41
(100).
HRMS (DART): m /z [M + H+ ] calcd for C19 H19 NO3 F3 S: 398.1032; found: 398.1033.
S -[4-(2-Hydroxyethoxy)phenyl] (2-Methylallyl)[4-(trifluoromethyl)phenyl]carbamothioate
(1c)
S -[4-(2-Hydroxyethoxy)phenyl] (2-Methylallyl)[4-(trifluoromethyl)phenyl]carbamothioate
(1c)
Typical Procedure was followed using N -(2-methylallyl)-4-(trifluoromethyl)aniline (1.8 g, 8.2 mmol). The subsequent alkylation
was run on a 3.0 mmol scale.
Yield: 0.22 g (18%); colorless oil; Rf
= 0.20 (silica gel, hexane/EtOAc 1:1).
IR (KBr): 3467 s, 2946 m, 1644 s, 1592 s, 1496 s, 1376 m, 1069 m, 906 s, 858 m, 833
m, 753 s, 717 m, 620 s, 559 m cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 7.70 (d, J = 8.2 Hz, 2 H), 7.48 (d, J = 8.2 Hz, 2 H), 7.36 (d, J = 8.7 Hz, 2 H), 6.90 (d, J = 8.7 Hz, 2 H), 4.82 (s, 1 H), 4.77 (s, 1 H), 4.31 (s, 2 H), 4.02 (t, J = 4.6 Hz, 2 H), 3.90 (t, J = 4.4 Hz, 2 H), 2.47 (s, 1 H), 1.77 (s, 3 H).
13 C NMR (100.53 MHz, CDCl3 ): δ = 168.2, 159.8, 143.7, 139.9, 137.2, 130.5 (q, J
CF = 32.6 Hz), 129.31, 126.5 (q, J
CF = 3.8 Hz), 123.8 (q, J
CF = 272.2 Hz), 119.9, 115.3, 114.4, 69.3, 61.3, 56.9, 20.2.
19 F NMR (376 MHz, CDCl3 ): δ = –63.8.
MS: m /z (%) = 411 (15) [M+ ], 243 (10), 242 (73), 170 (23), 126 (15), 125 (72), 55 (100), 45 (20).
HRMS (DART): m /z [M + H+ ] calcd for C20 H21 NO3 F3 S: 412.1189; found: 412.1193.
S -[4-(4-Hydroxybutoxy)phenyl] Cinnamyl[4-(trifluoromethyl)phenyl]carbamothioate (1d)
S -[4-(4-Hydroxybutoxy)phenyl] Cinnamyl[4-(trifluoromethyl)phenyl]carbamothioate (1d)
Typical Procedure was followed using 4-bromobutan-1-ol (0.16 g, 1.05 mmol). The subsequent
alkylation was run on a 0.70 mmol scale.
Yield: 30 mg (10%); white solid; mp 124 °C; Rf
= 0.40 (silica gel, hexane/EtOAc 1:1).
IR (KBr): 3535 m, 1648 s, 1609 s, 1593 s, 1570 m, 1495 s, 1367 m, 1323 s, 1242 s,
1193 m, 1170 s, 1121 s, 1105 m, 1066 m, 1018 m, 967 m, 831 s, 751 m, 619 m cm–1 .
1 H NMR (399.78 MHz, CDCl3 ,): δ = 7.71 (d, J = 8.2 Hz, 2 H), 7.51 (d, J = 8.2 Hz, 2 H), 7.38–7.25 (m, 7 H), 6.92–6.89 (m, 2 H), 6.42 (d, J = 15.6 Hz, 1 H), 6.31–6.25 (m, 1 H), 4.49 (d, J = 6.9 Hz, 2 H), 4.01 (t, J = 6.2 Hz, 2 H), 3.71 (t, J = 6.4 Hz, 2 H), 1.90–1.85 (m, 2 H), 1.78–1.70 (m, 3 H).
13 C NMR (100.53 MHz, CDCl3 ): δ = 168.1, 160.1, 143.7, 137.2, 136.3, 134.4, 130.8 (q, J
CF = 30.7 Hz), 130.0, 128.7, 128.1, 126.8 (q, J
CF = 3.8 Hz), 126.6, 123.8 (q, J
CF = 272.2 Hz), 123.4, 119.4, 115.3, 67.9, 62.6, 53.5, 29.5, 25.8.
19 F NMR (376 MHz, CDCl3 ): δ = –63.8.
MS: m /z (%) = 501 (1) [M+ ], 118 (10), 117 (100), 115 (14).
HRMS (DART): m /z [M + H+ ] calcd for C27 H27 NO3 F3 S: 502.1658; found: 502.1656.
(3-(2-Hydroxyethoxy)phenyl) Cinnamyl[4-(trifluoromethyl)phenyl]carbamothioate (1e)
(3-(2-Hydroxyethoxy)phenyl) Cinnamyl[4-(trifluoromethyl)phenyl]carbamothioate (1e)
Typical Procedure was followed using 3-mercaptophenol (1.1 mL, 11 mmol). The subsequent
alkylation was run on a 1.3 mmol scale.
Yield: 0.14 g (22%); colorless oil; Rf
= 0.20 (silica gel, hexane/EtOAc 1:1).
IR (KBr): 3419 w, 1806 m, 1775 m, 1669 m, 1612 m, 1589 m, 1477 w, 1371 w, 1324 s,
1246 m, 1167 m, 1127 m, 1068 m, 968 w, 774 m, 691 w, 620 w cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 7.72 (d, J = 8.4 Hz, 2 H), 7.51 (d, J = 8.4 Hz, 2 H), 7.35–7.27 (m, 6 H), 7.10–7.04 (m, 2 H), 6.98–6.94 (m, 1 H), 6.42
(d, J = 15.6 Hz, 1 H), 6.30–6.25 (m, 1 H), 4.49 (d, J = 6.9 Hz, 2 H), 4.08 (t, J = 4.6 Hz, 2 H), 3.94 (q, J = 4.3 Hz, 2 H), 2.05 (t, J = 6.0 Hz, 1 H).
13 C NMR (100.53 MHz, CDCl3 ): δ = 167.1, 158.8, 143.5, 136.3, 134.5, 131.0 (q, J
CF = 32.6 Hz), 130.1, 130.0, 129.9, 128.8, 128.3, 128.2, 126.8 (q, J
CF = 2.9 Hz), 126.7, 123.8 (q, J
CF = 272.2 Hz), 123.2, 121.4, 116.2, 69.4, 61.5, 53.6.
19 F NMR (376 MHz, CDCl3 ): δ = –63.9.
MS: m /z (%) = 473 (2) [M+ ], 118 (11), 117 (100), 115 (17).
HRMS (DART): m /z [M + H+ ] calcd for C25 H23 NO3 F3 S: 474.1345; found: 474.1338.
S -[4-(2-Hydroxyethoxy)phenyl] Cinnamyl(phenyl)carbamothioate (1i)
S -[4-(2-Hydroxyethoxy)phenyl] Cinnamyl(phenyl)carbamothioate (1i)
Typical Procedure was followed using N -cinnamylaniline (2.1 g, 10 mmol). The subsequent alkylation was run on a 1.0 mmol
scale.
Yield: 61 mg (15%); white solid; mp 127 °C; Rf
= 0.20 (silica gel, hexane/EtOAc 1:1).
IR (KBr): 3489 s, 1657 s, 1639 s, 1591 s, 1572 m, 1494 s, 1483 m, 1374 s, 1301 m,
1288 s, 1273 s, 1253 s, 1219 m, 1175 m, 1068 m, 1036 m, 963 m, 834 s, 727 s, 695 m
cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 7.48–7.24 (m, 12 H), 6.92 (d, J = 8.7 Hz, 2 H), 6.44–6.27 (m, 2 H), 4.48 (d, J = 6.4 Hz, 2 H), 4.07 (t, J = 4.6 Hz, 2 H), 3.94 (t, J = 4.6 Hz, 2 H), 2.23 (s, 1 H).
13 C NMR (100.53 MHz, CDCl3 ): δ = 168.2, 159.6, 140.2, 137.2, 136.6, 134.0, 129.8, 129.6, 129.0, 128.6, 127.9,
126.6, 123.8, 120.7, 115.2, 69.3, 61.3, 53.5.
MS: m /z (%) = 405 (1) [M+ ], 118 (10), 117 (100), 115 (17).
HRMS (DART): m /z [M + H+ ] calcd for C24 H24 NO3 S: 406.1471; found: 406.1472.
S -[4-(2-Hydroxyethoxy)phenyl] Cinnamyl(4-methoxyphenyl)carbamothioate (1j)
S -[4-(2-Hydroxyethoxy)phenyl] Cinnamyl(4-methoxyphenyl)carbamothioate (1j)
Typical Procedure was followed using N -cinnamyl-4-(methoxy)aniline (2.4 g, 10 mmol). The subsequent alkylation was run on
a 1.0 mmol scale.
Yield: 0.11g (25%); white solid; mp 96 °C; Rf
= 0.20 (silica gel, hexane/EtOAc 1:1).
IR (KBr): 3421 m, 1672 s, 1646 s, 1593 m, 1509 s, 1493 s, 1455 m, 1375 m, 1297 w,
1242 s, 1174 m, 1093 w, 916 m, 834 s, 733 m, 629 w, 465 w, 444 m, 433 m, 420 m, 410
m cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 7.40–7.24 (m, 9 H), 6.96–6.91 (m, 4 H), 6.40 (d, J = 16.0 Hz, 1 H), 6.27 (d, J = 15.6 Hz, 1 H), 4.43 (d, J = 6.4 Hz, 2 H), 4.07 (t, J = 4.6 Hz, 2 H), 3.94 (t, J = 4.4 Hz, 2 H), 3.84 (s, 3 H), 2.15 (s, 1 H).
13 C NMR (100.53 MHz, CDCl3 ): δ = 168.6, 159.9, 159.6, 137.2, 136.6, 134.0, 132.7, 131.1, 128.6, 127.9, 126.6,
123.9, 121.1, 115.2, 114.7, 69.3, 61.4, 55.6, 53.6.
MS: m /z (%) = 435 (1) [M+ ], 118 (10), 117 (100), 115 (15).
HRMS (DART): m /z [M + H+ ] calcd for C25 H26 NO4 S: 436.1571; found: 436.1579.
S -(4-Aminophenyl) Allyl(phenyl)carbamothioate (1h)
S -(4-Aminophenyl) Allyl(phenyl)carbamothioate (1h)
N -Benzylidene-protected 1h was prepared using (E )-4-(benzylideneamino)benzenethiol[11 ] according to the typical procedure on a 10 mmol scale. A white solid (3.7 g, ca.
98%) was obtained, and this material was used in the next step without further purification.
Thus obtained protected 1h (3.7 g, ca. 10 mmol) was dissolved in 1.0 M aq HCl (80 mL), and the solution was
stirred at rt for 1 h. The mixture was then quenched with 2.0 M aq NaOH (100 mL),
and the resulting mixture was extracted with EtOAc (3 × 30 mL). The combined extracts
were washed with brine (50 mL), dried over anhydrous Na2 SO4 , and concentrated. The resulting crude product was purified by flash chromatography
(hexane/EtOAc 1:1) to give 1h .
Yield: 1.53 g (54%); white solid; mp 96 °C; Rf
= 0.32 (silica gel, hexane/EtOAc 1:1).
IR (KBr): 3651 m, 3373 s, 1655 m, 1652 w, 1618 w, 1592 w, 1514 s, 1452 w, 1435 m,
1363 s, 1335 w, 1295 s, 1250 s, 1217 s, 1176 s, 1170 s, 1128 w, 1073 m, 1018 w, 1003
w cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 7.46–7.42 (m, 3 H), 7.35 (d, J = 8.0 Hz, 2 H), 7.21 (d, J = 8.0 Hz, 2 H), 6.62 (d, J = 8.0 Hz, 2 H), 5.95–5.85 (m, 1 H), 5.16–5.10 (m, 2 H), 4.33 (d, J = 6.4 Hz, 2 H), 3.76 (s, 2 H).
13 C NMR (100.53 MHz, CDCl3 ): δ = 168.7, 147.8, 140.4, 137.0, 132.8, 129.6, 129.4, 128.7, 118.5, 116.6, 115.4,
53.8.
MS: m /z (%) = 284 (33) [M+ ], 160 (64), 132 (27), 125 (10), 123 (72), 80 (26), 41 (100).
HRMS (DART): m /z [M + H+ ] calcd for C16 H17 N2 OS: 285.1056; found: 285.1056.
N -Allyl-2-[4-(hydroxymethyl)benzyl]-1-oxo-N -phenyl-2,3-dihydro-1H -indene-2-carboxamide (3)
N -Allyl-2-[4-(hydroxymethyl)benzyl]-1-oxo-N -phenyl-2,3-dihydro-1H -indene-2-carboxamide (3)
N -Allyl-2-{4-[(tert -butyldimethylsiloxy)methyl]benzyl}-1-oxo-N -phenyl-2,3-dihydro-1H -indene-2-carboxamide (TBS-protected 3)
N -Allyl-2-{4-[(tert -butyldimethylsiloxy)methyl]benzyl}-1-oxo-N -phenyl-2,3-dihydro-1H -indene-2-carboxamide (TBS-protected 3)
A 100 mL two-necked flask with a magnetic stirring bar was evacuated and backfilled
with nitrogen three times. Methyl 1-oxo-2,3-dihydro-1H -indene-2-carboxylate (2.2 g, 12 mmol) and N -allylaniline (5.0 mL, 24 mmol) were added to the flask. The mixture was stirred at
70 °C for 48 h, and then cooled to rt. The residue was concentrated and purified by
column chromatography (silica gel, hexane/EtOAc 9:1) to afford crude N -allyl-1-oxo-N -phenyl-2,3-dihydro-1H -indene-2-carboxamide as a yellow solid (0.92 g, ca. 28% yield), which was used in
the next step without further purification. This amide (0.60 g, 2.0 mmol) was added
to a suspension of NaH (0.16 g, 4 mmol, 60% dispersion in mineral oil) in THF, and
[4-(bromomethyl)benzyl](tert -butyl)dimethylsilane (10 mmol, 0.61 mL) was then added dropwise. The reaction mixture
was stirred at rt for 12 h, and then H2 O (15 mL) was added. The residue was extracted with EtOAc (3 × 15 mL), and the combined
organic extracts were washed with brine, dried over anhydrous Na2 SO4 , and concentrated. The resulting crude product was purified by flash chromatography
(silica gel, hexane/EtOAc 8:2) to give TBS-protected 3 .
Yield: 0.42 g (81%); white solid; mp 108 °C; Rf
= 0.54 (silica gel, hexane/EtOAc 1:1).
IR (KBr): 1703 s, 1652 m, 1641 s, 1494 w, 1381 w, 1272 w, 1258 w, 1092 w, 1079 m,
835 m, 784 w, 703 m cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 7.12–7.08 (m, 2 H), 6.89 (q, J = 8.1 Hz, 9 H), 6.82 (d, J = 7.8 Hz, 1 H), 6.75 (t, J = 6.9 Hz, 1 H), 5.91–5.84 (m, 1 H), 5.09–4.99 (m, 2 H), 4.46 (s, 2 H), 4.22 (dd,
J = 7.8, 6.4 Hz, 2 H), 3.47–3.34 (m, 3 H), 3.16 (d, J = 17.9 Hz, 1 H), 0.80 (t, J = 2.7 Hz, 9 H), –0.12 (q, J = 2.7 Hz, 6 H).
13 C NMR (100.53 MHz, CDCl3 ): δ = 205.5, 171.1, 151.3, 139.4, 139.0, 137.1, 134.2, 134.0, 132.7, 130.4, 128.3,
126.6, 125.4, 125.2, 123.4, 118.1, 64.6, 60.4, 55.1, 42.0, 37.0, 25.9, 18.3, –5.3.
MS: m /z (%) = 525 (2) [M+ ], 393 (28), 349 (29), 348 (100), 233 (26), 133 (15), 132 (35), 104 (36), 91 (13),
75 (16), 73 (62), 41 (29).
HRMS (DART): m /z [M + H+ ] calcd for C33 H40 NO3 Si: 526.2772; found: 526.2768.
Carboxamide 3 by Deprotection of TBS-protected 3
Carboxamide 3 by Deprotection of TBS-protected 3
TBS-protected 3 (0.42 g, 0.80 mmol) was dissolved in THF (15 mL), and 1.0 M TBAF in THF (1.4 mL,
14 mmol) was added to it. The mixture was stirred at rt overnight. The mixture was
then quenched with sat. aq NH4 Cl (5.0 mL), and the resulting mixture was extracted with EtOAc (3 × 6.0 mL). The
combined extracts were washed with brine (6.0 mL), dried over anhydrous Na2 SO4 , and concentrated. The resulting crude product was purified by flash chromatography
(hexane/ EtOAc 1:9) to give 3 .
Yield: 0.29 g (88%); white solid; mp 88 °C; Rf
= 0.49 (silica gel, EtOAc).
IR (KBr): 3470 m, 1713 s, 1635 s, 1608 m, 1594 m, 1495 m, 1436 m, 1387 s, 1258 s,
1015 m, 983 m, 922 m, 745 m, 702 s cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 7.15 (q, J = 6.6 Hz, 2 H), 6.97–6.85 (m, 10 H), 6.79 (s, 2 H), 5.94–5.84 (m, 1 H), 5.12–5.02
(m, 2 H), 4.44 (s, 2 H), 4.24 (m, 2 H), 3.47–3.37 (m, 3 H), 3.16 (d, J = 18.3 Hz, 1 H).
13 C NMR (100.53 MHz, CDCl3 ): δ = 205.4, 171.2, 151.4, 139.1, 139.0, 137.1, 135.3, 134.2, 132.8, 131.0, 128.4,
128.3, 126.8, 126.4, 125.4, 123.7, 118.3, 65.1, 60.6, 55.3, 42.2, 37.2.
MS: m /z (%) = 411 (7) [M+ ], 393 (11), 290 (19), 262 (12), 261 (20), 251 (10), 233 (26), 157 (20), 133 (30),
132 (100), 131 (11), 121 (67), 115 (24), 106 (13), 105 (21), 104 (23), 93 (34), 91
(77), 77 (50), 41 (29).
HRMS (DART): m /z [M + H+ ] calcd for C27 H26 NO3 : 412.1907; found: 412.1913.
2-[4-(Allylthio)phenoxy]ethyl [4-(Trifluoromethyl)phenyl]carbamate (2b); Typical Procedure
2-[4-(Allylthio)phenoxy]ethyl [4-(Trifluoromethyl)phenyl]carbamate (2b); Typical Procedure
In a glovebox filled with nitrogen, Pd(PPh3 )4 (11.6 mg, 0.010 mmol), dcype (4.7 mg, 0.010 mmol), and toluene (1.0 mL) were added
to a 10 mL vial with a Teflon-sealed screwcap, and the mixture was stirred at rt for
5 min. Amide 1b (39.7 mg, 0.10 mmol) was then added, and the vial was sealed with the cap. The vessel
was heated at 100 °C for 18 h, after which it was cooled to rt and the crude mixture
was filtered through a pad of Celite. The crude product was purified by flash column
chromatography (silica gel) to give 2b .
Yield: 36.5 mg (92%); white solid; mp 103 °C; Rf
= 0.68 (silica gel, hexane/EtOAc 1:1).
IR (KBr): 3322 s, 1702 s, 1597 s, 1540 s, 1495 s, 1455 m, 1413 m, 1329 s, 1281 m,
1232 m, 1118 m, 1091 m, 1069 m, 1016 m, 931 m, 831 m, 648 m, 515 m cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 7.57 (d, J = 8.7 Hz, 2 H), 7.50 (d, J = 8.7 Hz, 2 H), 7.34 (td, J = 6.0, 3.5 Hz, 2 H), 6.91 (s, 1 H), 6.85 (dt, J = 9.5, 2.6 Hz, 2 H), 5.87–5.79 (m, 1 H), 5.03–4.97 (m, 2 H), 4.54 (dd, J = 5.3, 3.9 Hz, 2 H), 4.20 (t, J = 4.6 Hz, 2 H), 3.44 (dt, J = 7.0, 1.1 Hz, 2 H).
13 C NMR (100.53 MHz, CDCl3 ): δ = 157.8, 152.9, 140.8, 134.0, 133.8, 126.8, 126.5 (q, J
CF = 3.8 Hz), 125.5 (q, J
CF = 32.6 Hz), 124.2 (q, J
CF = 271.2 Hz), 118.2, 117.5, 115.1, 66.2, 63.9, 39.2.
19 F NMR (376 MHz, CDCl3 ): δ = –63.3.
MS: m /z (%) = 397 (7) [M+ ], 233 (11), 232 (100), 188 (13), 166 (36), 160 (10), 145 (11), 125 (31), 45 (49),
41 (21).
HRMS (DART): m /z [M + H+ ] calcd for C19 H19 NO3 F3 S: 398.1032; found: 398.1031.
CCDC 2220352 (2b ) contains the supplementary crystallographic data for this paper. The data can be
obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
2-{4-[(2-Methylallyl)thio]phenoxy}ethyl [4-(Trifluoromethyl)phenyl]carbamate (2c)
2-{4-[(2-Methylallyl)thio]phenoxy}ethyl [4-(Trifluoromethyl)phenyl]carbamate (2c)
Yield: 27.2 mg (65%); white solid; mp 101 °C; Rf
= 0.72 (silica gel, hexane/EtOAc 1:1).
IR (KBr): 3269 s, 1693 s, 1597 m, 1545 m, 1495 s, 1455 m, 1408 m, 1339 s, 1282 m,
1236 m, 1164 s, 1114 m, 1082 m, 1070 m, 904 s, 832 s, 784 m, 767 m, 672 m, 530 m,
508 m cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 7.56 (d, J = 8.4 Hz, 2 H), 7.49 (d, J = 8.4 Hz, 2 H), 7.33 (td, J = 4.6, 2.4 Hz, 2 H), 6.90 (s, 1 H), 6.86–6.83 (m, 2 H), 4.74 (q, J = 1.5 Hz, 1 H), 4.65 (d, J = 0.9 Hz, 1 H), 4.54 (t, J = 4.6 Hz, 2 H), 4.20 (dd, J = 5.3, 3.9 Hz, 2 H), 3.41 (d, J = 0.9 Hz, 2 H), 1.84 (s, 3 H).
13 C NMR (100.53 MHz, CDCl3 ): δ = 157.8, 152.9, 141.2, 140.9, 133.9, 127.4, 126.5 (q, J
CF = 3.1 Hz), 125.6 (q, J
CF = 32.3 Hz), 124.2 (q, J
CF = 272.2 Hz), 118.2, 115.1, 114.0, 66.2, 64.0, 44.0, 21.1.
19 F NMR (376 MHz, CDCl3 ,): δ = –63.3.
MS: m /z (%) = 411 (9) [M+ ], 233 (11), 232 (100), 207 (19), 188 (13), 180 (40), 160 (10), 147 (17), 125 (24),
55 (32), 45 (46).
HRMS (DART): m /z [M + H+ ] calcd for C20 H21 NO3 F3 S: 412.1189; found: 412.1191.
4-[4-(Cinnamylthio)phenoxy]butyl [4-(Trifluoromethyl)phenyl]carbamate (2d)
4-[4-(Cinnamylthio)phenoxy]butyl [4-(Trifluoromethyl)phenyl]carbamate (2d)
Run on a 0.050 mmol scale.
Yield: 14.2 mg (56%); white solid; mp 138 °C; Rf
= 0.68 (silica gel, hexane/EtOAc 1:1).
IR (KBr): 3355 w, 1710 s, 1619 w, 1598 w, 1539 m, 1517 m, 1493 m, 1473 w, 1413 w,
1336 s, 1269 w, 1233 s, 1182 w, 1164 w, 1114 m, 1072 m, 819 w, 505 w, 433 w, 422 w
cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 7.56 (d, J = 8.7 Hz, 2 H), 7.48 (d, J = 8.7 Hz, 2 H), 7.38–7.28 (m, 6 H), 7.22 (dt, J = 6.1, 2.5 Hz, 1 H), 6.81 (dt, J = 9.5, 2.6 Hz, 2 H), 6.73 (s, 1 H), 6.30–6.20 (m, 2 H), 4.26 (t, J = 6.0 Hz, 2 H), 3.98 (t, J = 5.7 Hz, 2 H), 3.58 (q, J = 3.1 Hz, 2 H), 1.90–1.87 (m, 4 H).
13 C NMR (100.53 MHz, CDCl3 ): δ = 158.6, 153.3, 141.1, 137.0, 134.5, 132.6, 128.6, 127.6, 126.5 (q, J
CF = 3.8 Hz), 126.4, 125.9, 125.7, 125.3 (q, J
CF = 32.6 Hz), 124.3 (q, J
CF = 272.2 Hz), 118.1, 115.1, 67.4, 65.4, 39.3, 25.9, 25.8.
19 F NMR (376 MHz, CDCl3 ): δ = –63.3.
MS: m /z (%) = 501 (0) [M+ ], 314 (6) [M+ – isocyanate], 126 (42), 118 (12), 117 (100), 115 (26), 91 (11).
HRMS (DART): m /z [M + H+ ] calcd for C27 H27 NO3 F3 S: 502.1658; found: 502.1652.
2-[3-(Cinnamylthio)phenoxy]ethyl [4-(Trifluoromethyl)phenyl]carbamate (2e)
2-[3-(Cinnamylthio)phenoxy]ethyl [4-(Trifluoromethyl)phenyl]carbamate (2e)
Yield: 25.7 mg (54%); white solid; mp 98 °C; Rf
= 0.57 (silica gel, hexane/EtOAc 1:1).
IR (KBr): 3330 m, 2361 s, 2340 m, 1704 s, 1592 m, 1567 m, 1540 s, 1475 m, 1457 m,
1416 m, 1336 s, 1283 m, 1232 m, 1161 m, 1113 m, 1088 m, 971 m, 945 m, 836 m, 757 m,
505 m, 473 m, 422 m, 412 m cm–1 .
1 H NMR (399.78 MHz, CDCl3 ,): δ = 7.57 (d, J = 8.7 Hz, 2 H), 7.49 (d, J = 8.7 Hz, 2 H), 7.33–7.27 (m, 4 H), 7.23–7.19 (m, 2 H), 6.99 (d, J = 7.8 Hz, 1 H), 6.94 (t, J = 1.8 Hz, 1 H), 6.87 (s, 1 H), 6.75 (dd, J = 8.2, 2.3 Hz, 1 H), 6.46 (d, J = 15.6 Hz, 1 H), 6.29–6.22 (m, 1 H), 4.50 (t, J = 4.6 Hz, 2 H), 4.16 (t, J = 4.4 Hz, 2 H), 3.73–3.71 (m, 2 H).
13 C NMR (100.53 MHz, CDCl3 ,): δ = 158.6, 152.9, 140.9, 137.6, 136.8, 133.1, 129.9, 128.7, 127.8, 126.53 (q,
J
CF = 3.8 Hz), 126.46, 125.5 (q, J
CF = 32.6 Hz), 125.0, 124.2 (q, J
CF = 271.3 Hz), 122.7, 118.2, 116.0, 112.8, 66.2, 63.9, 36.9.
19 F NMR (376 MHz, CDCl3 ,): δ = –63.3.
MS: m /z (%) = 473 (0) [[M+ ], 286 (4) [M+ – isocyanate], 118 (10), 117 8100), 115 (28), 91 (11).
HRMS (DART): m /z [M + H+ ] calcd for C25 H23 NO3 F3 S: 474.1345; found: 474.1347.
1-Cinnamylpiperidin-4-yl [4-(Trifluoromethyl)phenyl]carbamate (2f)
1-Cinnamylpiperidin-4-yl [4-(Trifluoromethyl)phenyl]carbamate (2f)
Yield: 24 mg (59%); white solid; mp 128 °C; Rf
= 0.16 (silica gel, EtOAc).
In addition to 2f , an UFC product (isocyanate is not trapped by the OH group) was obtained (4.1 mg,
19% isolated yield). Note that 2f decomposed to form the UFC product when NH silica was used for its isolation.
IR (KBr): 3342 m, 1700 s, 1617 m, 1536 m, 1511 m, 1410 m, 1331 s, 1238 m, 1162 m,
1121 s, 1072 s, 833 m, 691 m cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 7.53 (dd, J = 19.5, 8.9 Hz, 4 H), 7.39–7.37 (m, 2 H), 7.31 (t, J = 7.6 Hz, 2 H), 7.26–7.22 (m, 1 H), 7.04 (s, 1 H), 6.52 (d, J = 15.6 Hz, 1 H), 6.27 (dt, J = 15.6, 6.9 Hz, 1 H), 4.85–4.81 (m, 1 H), 3.19–3.17 (m, 2 H), 2.82 (br, 2 H), 2.32
(br, 2 H), 2.04–2.00 (m, 2 H), 1.83–1.74 (m, 2 H).
13 C NMR (100.53 MHz, CDCl3 ): δ = 152.8, 141.3, 136.9, 133.3, 128.7, 127.7, 126.5 (q, J
CF = 4.8 Hz), 126.4, 125.2 (q, J
CF = 32.6 Hz), 122.1, 121.6 (q, J
CF = 271.3 Hz), 118.1, 71.7, 61.1, 51.0, 31.2.
19 F NMR (376 MHz, CDCl3 ): δ = –63.2.
MS: m /z (%) = 404 (31) [M+ ], 281 (16), 207 (33), 118 (100), 73 (11).
HRMS (DART): m /z [M + H+ ] calcd for C22 H24 N2 O2 F3 : 405.1784; found: 405.1782.
4-(Cinnamylthio)phenyl [4-(Trifluoromethyl)phenyl]carbamate (2g)
4-(Cinnamylthio)phenyl [4-(Trifluoromethyl)phenyl]carbamate (2g)
Yield: 17.1 mg (40%); white solid; mp 179 °C; Rf
= 0.43 (silica gel, hexane/EtOAc 2:1).
IR (KBr): 2931 m, 2853 w, 1748 m, 1615 m, 1540 m, 1478 m, 1411 w, 1324 s, 1198 s,
1184 s, 1163 m, 1115 m, 1067 s, 1004 w, 842 m, 753 w, 433 m, 422 m, 411 w cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 7.58 (q, J = 9.2 Hz, 4 H), 7.42 (d, J = 8.7 Hz, 2 H), 7.34–7.23 (m, 5 H), 7.12 (d, J = 8.7 Hz, 2 H), 7.08 (s, 1 H), 6.43 (d, J = 15.6 Hz, 1 H), 6.29–6.21 (m, 1 H), 3.70 (d, J = 6.9 Hz, 2 H).
13 C NMR (100.53 MHz, CDCl3 ): δ = 151.2, 149.2, 140.5, 136.8, 133.4, 133.1, 132.0, 128.7, 127.8, 126.6 (q, J
CF = 2.9 Hz), 126.5, 125.7 (q, J
CF = 33.6 Hz), 125.0, 124.2 (q, J
CF = 271.3 Hz), 122.1, 118.4, 37.9.
19 F NMR (376 MHz, CDCl3 ): δ = –63.4.
MS: m /z (%) = 429 (1) [M+ ], 118 (10), 117 (100), 115 (19).
HRMS (DART): m /z [M + H+ ] calcd for C23 H19 NO2 F3 S: 430.1083; found: 430.1089.
1-[4-(Allylthio)phenyl]-3-phenylurea (2h)
1-[4-(Allylthio)phenyl]-3-phenylurea (2h)
Run on a 0.20 mmol scale.
Yield: 43.6 mg (77%); white solid; mp 126 °C; Rf
= 0.80 (silica gel, EtOAc).
IR (KBr): 3306 m, 1639 s, 1594 s, 1585 m, 1562 m, 1557 s, 1552 s, 1538 w, 1532 w,
1519 w, 1496 m, 1443 m, 1439 m, 1395 w, 1313 w, 1294 w, 1288 w, 1261 w, 1234 m, 924
w cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 7.25–7.20 (m, 5 H), 7.14 (dd, J = 11.4, 8.7 Hz, 3 H), 7.09–7.04 (m, 1 H), 5.87–5.77 (m, 1 H), 5.07–5.01 (m, 2 H),
3.44 (d, J = 6.9 Hz, 2 H).
13 C NMR (100.53 MHz, CDCl3 ): δ = 154.7, 137.8, 136.8, 133.6, 131.6, 130.1, 129.1, 124.0, 121.2, 120.7, 117.7,
38.2.
MS: m /z (%) = 284 (0) [M+ ], 165 (22) [M+ – isocyanate], 124 (100), 80 (26).
HRMS (DART): m /z [M + H+ ] calcd for C16 H17 N2 OS: 285.1056; found: 285.1058.
2-[4-(Cinnamylthio)phenoxy]ethyl Phenylcarbamate (2i)
2-[4-(Cinnamylthio)phenoxy]ethyl Phenylcarbamate (2i)
Run on a 0.15 mmol scale.
Yield: 47.7 mg (78%); white solid; mp 106 °C; Rf
= 0.73 (silica gel, hexane/EtOAc 1:1).
IR (KBr): 3293 m, 1698 s, 1597 m, 1537 m, 1492 m, 1442 m, 1312 w, 1243 m, 1224 m,
1176 w, 1064 m, 1025 w, 928 w, 834 m, 420 w cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 7.38–7.26 (m, 10 H), 7.23–7.20 (m, 1 H), 7.10–7.05 (m, 1 H), 6.85 (dt, J = 9.5, 2.5 Hz, 2 H), 6.71 (s, 1 H), 6.31–6.18 (m, 2 H), 4.52–4.50 (m, 2 H), 4.18
(t, J = 4.8 Hz, 2 H), 3.59 (d, J = 6.4 Hz, 2 H).
13 C NMR (100.53 MH, CDCl3 ): δ = 158.2, 153.3, 137.7, 137.0, 134.4, 132.6, 129.3, 128.7, 127.6, 126.6, 126.4,
125.6, 123.8, 118.9, 115.2, 66.5, 63.6, 39.2.
MS: m /z (%) = 405 (0) [M+ ], 286 (8) [M+ – isocyanate], 118 (10), 117 (100), 115 (26).
HRMS (DART): m /z [M + H+ ] calcd for C24 H24 NO3 S: 406.1471; found: 406.1464.
2-[4-(Cinnamylthio)phenoxy]ethyl (4-Methoxyphenyl)carbamate (2j)
2-[4-(Cinnamylthio)phenoxy]ethyl (4-Methoxyphenyl)carbamate (2j)
Run on a 0.12 mmol scale.
Yield: 8.0 mg (15%); white solid; mp 139 °C; Rf
= 0.62 (silica gel, hexane/EtOAc 1:1).
IR (KBr): 3344 m, 1698 s, 1535 m, 1491 m, 1451 w, 1415 w, 1240 s, 1222 s, 1185 w,
1088 m, 1066 m, 1024 m, 970 w, 816 m, 758 m cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 7.38–7.33 (m, 2 H), 7.31–7.28 (m, 7 H), 7.22 (td, J = 4.2, 2.1 Hz, 1 H), 6.86–6.84 (m, 4 H), 6.30–6.19 (m, 2 H), 4.49 (t, J = 4.6 Hz, 2 H), 4.18 (t, J = 4.6 Hz, 2 H), 3.78 (s, 3 H), 3.59 (d, J = 6.4 Hz, 2 H).
13 C NMR (100.53 MHz, CDCl3 ): δ = 158.2, 156.3, 137.0, 134.4, 134.3, 132.6, 130.7, 128.7, 127.6, 126.5, 126.4,
125.6, 120.9, 115.2, 114.4, 66.5, 63.5, 55.6, 39.2.
MS: m /z (%) = 435 (0) [M+ ], 286 (8) [M+ – isocyanate], 118 (10), 117 (100), 115 (26), 91 (10).
HRMS (DART): m /z [M + H+ ] calcd for C25 H26 NO4 S: 436.1577; found: 436.1574.
Products 4, 5, and 6 by Palladium-Catalyzed Elimination of Isocyanate from Carboxamide
3
Products 4, 5, and 6 by Palladium-Catalyzed Elimination of Isocyanate from Carboxamide
3
In a glovebox filled with nitrogen, Pd(PPh3 )4 (11.6 mg, 0.010 mmol), dcype (4.7 mg, 0.010 mmol), and THF (1.0 mL) were added to
a 10 mL vial with a Teflon-sealed screwcap, and the mixture was stirred at rt for
5 min. Amide 3 (41.1 mg, 0.10 mmol) and K3 PO4 (13.8 mg, 0.10 mmol) were then added, and the cap was applied to seal the vial. The
vessel was heated at 100 °C for 6 h, then cooled to rt; the crude mixture was filtered
through a pad of Celite. The crude product was purified by flash column chromatography
(silica gel) to give a mixture of 4 , 5 , and 6 .
Yield: 35 mg (83%); 4 /5 /6 = 4.2:1:2.5 (ratio by 1 H NMR analysis); colorless oil; Rf
= 0.70 (silica gel, hexane/EtOAc 1:1).
A part of each product was obtained in pure form through purification by GPC.
4-[(2-Allyl-1-oxo-2,3-dihydro-1H -inden-2-yl)methyl]benzyl Phenylcarbamate (4)
4-[(2-Allyl-1-oxo-2,3-dihydro-1H -inden-2-yl)methyl]benzyl Phenylcarbamate (4)
IR (KBr): 1717 w, 1704 m, 1700 m, 1696 m, 1558 w, 1539 m, 786 s, 757 s, 418 m cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 7.70 (d, J = 7.8 Hz, 1 H), 7.51–7.47 (m, 1 H), 7.36 (d, J = 7.8 Hz, 2 H), 7.31–7.26 (m, 4 H), 7.20 (d, J = 7.8 Hz, 2 H), 7.11 (d, J = 7.8 Hz, 2 H), 7.08–7.04 (m, 1 H), 6.67 (s, 1 H), 5.63–5.53 (m, 1 H), 5.08–5.04
(m, 3 H), 4.99–4.96 (m, 1 H), 3.13–3.07 (m, 2 H), 2.95 (d, J = 17.4 Hz, 1 H), 2.82 (d, J = 13.5 Hz, 1 H), 2.53 (q, J = 6.7 Hz, 1 H), 2.30 (dd, J = 13.5, 8.0 Hz, 1 H).
13 C NMR (100.53 MHz CDCl3 ): δ = 210.2, 153.1, 137.9, 137.8, 136.8, 135.0, 134.2, 133.4, 130.6, 129.2, 128.3,
127.4, 126.5, 124.0, 123.6, 118.9, 118.7, 66.8, 53.9, 42.6, 42.4, 35.5.
MS: m /z (%) = 411 (0) [M+ ], 292 (3) [M+ – isocyanate], 236 (29), 235 (32), 234 (43), 132 (22), 131 (44), 120 (15), 119 (21),
117 (11), 115 (18), 105 (24), 104 (100), 103 (22), 91 (82), 90 (12), 89 (10), 77 (15),
41 (22).
HRMS (DART): m /z [M + H+ ] calcd for C27 H26 NO3 : 412.1907; found: 412.1909.
4-[(2-Allyl-1-oxo-2,3-dihydro-1H -inden-2-yl)methyl]benzyl Allyl(phenyl)carbamate (5)
4-[(2-Allyl-1-oxo-2,3-dihydro-1H -inden-2-yl)methyl]benzyl Allyl(phenyl)carbamate (5)
IR (KBr): 1706 s, 1607 w, 1598 w, 1496 m, 1464 w, 1443 w, 1436 w, 1396 m, 1360 w,
1295 m, 1275 m, 1253 m, 1229 m, 1147 m, 1018 w, 993 w, 921 w, 700 m cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 7.69 (d, J = 7.3 Hz, 1 H), 7.48 (td, J = 7.4, 1.1 Hz, 1 H), 7.33–7.27 (m, 4 H), 7.23–7.18 (m, 3 H), 7.06 (s, 4 H), 5.92–5.82
(m, 1 H), 5.61–5.53 (m, 1 H), 5.12–4.96 (m, 6 H), 4.24 (dt, J = 6.0, 1.4 Hz, 2 H), 3.10–3.05 (m, 2 H), 2.94 (d, J = 17.4 Hz, 1 H), 2.79 (d, J = 13.3 Hz, 1 H), 2.53 (q, J = 6.6 Hz, 1 H), 2.30 (dd, J = 13.7, 8.2 Hz, 1 H).
13 C NMR (100.53 MHz, CDCl3 ): δ = 210.3, 155.3, 153.1, 137.1, 136.8, 135.0, 134.8, 133.8, 133.4, 130.4, 129.0,
127.5, 127.4, 126.8, 126.6, 126.5, 123.9, 118.9, 117.4, 117.2, 67.1, 53.9, 53.4, 42.6,
42.4, 35.5
MS: m /z (%) = 451 (1) [M+ ], 407 (13), 281 (19), 276 (11), 275 (42), 236 (12), 235 (71), 234 (100), 233 (11),
208 (12), 207 (59), 132 (14), 131 (12), 128 (10), 117 (12), 115 (12), 105 (13), 104
(39), 103 (14), 91 (28), 77 (14), 73 (17), 41 (16).
HRMS (DART): m /z [M + H+ ] calcd for C30 H30 NO3 : 452.2220; found: 452.2219.
2-{4-[(Allyloxy)methyl]benzyl}-1-oxo-N -phenyl-2,3-dihydro-1H -indene-2-carboxamide (6)
2-{4-[(Allyloxy)methyl]benzyl}-1-oxo-N -phenyl-2,3-dihydro-1H -indene-2-carboxamide (6)
IR (KBr): 3328 w, 2854 w, 1699 s, 1598 s, 1539 s, 1498 w, 1466 w, 1442 w, 1311 m,
1299 w, 1080 w, 935 w, 913 w, 755 m, 692 m, 505 w cm–1 .
1 H NMR (399.78 MHz, CDCl3 ): δ = 9.20 (s, 1 H), 7.75 (d, J = 7.8 Hz, 1 H), 7.60–7.54 (m, 3 H), 7.36 (td, J = 15.5, 7.8 Hz, 4 H), 7.17–7.07 (m, 5 H), 5.96–5.86 (m, 1 H), 5.29–5.17 (m, 2 H),
4.43 (s, 2 H), 3.97–3.92 (m, 3 H), 3.35 (d, J = 13.7 Hz, 1 H), 3.26 (d, J = 3.7 Hz, 1 H), 3.22 (d, J = 8.2 Hz, 1 H).
13 C NMR (100.53 MHz, CDCl3 ): δ = 207.2, 167.6, 153.5, 137.8, 137.5, 136.3, 135.1, 134.8, 134.6, 130.1, 129.1,
127.8, 127.7, 126.7, 124.6, 124.5, 120.1, 117.3, 71.8, 71.1, 62.2, 45.3, 34.9.
MS: m /z (%) = 411 (0) [M+ ], 292 (41) [M+ – isocyanate], 234 (22), 233 (479, 171 812), 161 (18), 131 (13), 129 (10), 128 (20),
119 (52), 117 (11), 115 (19), 105 (20), 104 (27), 91 (100), 90 (11), 55 (10), 41 (37).
HRMS (DART): m /z [M + H+ ] calcd for C27 H26 NO3 : 412.1907; found: 412.1908.