Synlett, Table of Contents Synlett 2023; 34(09): 1019-1022DOI: 10.1055/a-2024-4595 letter Published as part of the Special Edition Thieme Chemistry Journals Awardees 2022 [3,3]-Rearrangements of N-Oxyindoles Kashif Ali , Milan Bera , Eun Jin Cho∗ Recommend Article Abstract Buy Article All articles of this category Abstract The concerted Ag-catalyzed rearrangement of N-indolyl carbonates and esters to afford 3-oxyindole derivatives with broad functional-group compatibility is presented. In addition, this concerted [3,3]-rearrangement approach was expanded to the synthesis of phosphonate and sulfonamide derivatives without the use of an Ag catalyst. Control experiments suggested that no radical pathway is involved at any stage of the rearrangement process. Key words Key wordssilver triflate - oxyindoles - rearrangement - indolyl carbonates - indolyl esters Full Text References References and Notes 1a Tabolin AA, Ioffe SL. Chem. Rev. 2014; 114: 5426 1b Nakamura I, Terada M. Tetrahedron Lett. 2019; 60: 689 2a Porzelle A, Woodrow MD, Tomkinson NC. O. Org. Lett. 2010; 12: 812 2b Porzelle A, Woodrow MD, Tomkinson NC. O. Eur. J. Org. Chem. 2008; 5135 3a Nakamura I, Jo T, Ishida Y, Tashiro H, Terada M. Org. Lett. 2017; 19: 3059 3b Ishida Y, Nakamura I, Terada M. J. Am. Chem. Soc. 2018; 140: 8629 3c Fang Y.-Q, Dang L. Org. Lett. 2020; 22: 9178 4 Nakamura I, Owada M, Jo T, Terada M. Org. Lett. 2017; 19: 2194 5 Wu Q, Yan D, Chen Y, Wang T, Xiong F, Wei W, Lu Y, Sun W.-Y, Li JJ, Zhao J. Nat. Commun. 2017; 8: 14227 6 Nagayoshi T, Saeki S, Hamana M. Heterocycles 1977; 6: 1666 7 Bera M, Hwang HS, Um T.-W, Oh SM, Shin S, Cho EJ. Org. Lett. 2022; 24: 1774 8 For the reactions of N-enoxybenzotriazoles, see: Nguyen QH, Hwang HS, Cho EJ, Shin S. ACS Catal. 2022; 12: 8833 9a Bera M, Lee DS, Cho EJ. Trends Chem. 2021; 3: 877 9b Lee DS, Soni VK, Cho EJ. Acc. Chem. Res. 2022; 55: 2526 10a Iwaki T, Yamada F, Funaki S, Somei M. Heterocycles 2005; 65: 1811 10b Yoshino K, Yamada F, Noguchi K, Kusuno K, Somei M. Heterocycles 2019; 98: 1384 11a Yamamoto Y. J. Org. Chem. 2007; 72: 7817 11b Wang C, Xi Z. Chem. Soc. Rev. 2007; 36: 1395 11c Àlvarez-Corral M, Muñoz-Dorado M, Rodríguez-García I. Chem. Rev. 2008; 108: 3174 For examples of Lewis acid promoted N–O bond cleavages, see: 12a Miyoshi T, Sato S, Tanaka H, Hasegawa C, Ueda M, Miyata O. Tetrahedron Lett. 2012; 53: 4188 12b Naumovich YA, Buckland VE, Sen’ko DA, Nelyubina YV, Khoroshutina YA, Sukhorukov AY, Ioffe SL. Org. Biomol. Chem. 2016; 14: 3963 13 Liu X, Pei J, Gao Z, Gao H. Org. Lett. 2022; 24: 7690 14 The reaction products were analyzed by GC-MS spectrometry. Please see the Supporting Information for details. 15 Represented procedure: Synthesis of ethyl (2-phenyl-1H-indol-3-yl) carbonate (2a); An oven-dried An oven-dried 10-mL resealable reaction tube equipped with a stirrer bar was charged with carbonate 1a (56 mg, 0.2 mmol) and AgOTf (10 mol%, 5 mg). The tube was then evacuated and refilled with argon twice. DCE (0.1 M, 2 mL) was added under an argon counterflow, and the mixture was stirred at 40 °C until the reaction was complete (TLC, ~12 h). The crude mixture was concentrated under reduced pressure and purified by flash column chromatography [silica gel, hexanes–EtOAc (4:1)] to give a yellowish liquid 2a, yield: 44 mg (79%). 1H NMR (600 MHz, CDCl3): δ = 8.02 (br s, 1 H), 7.67 (dd, J = 8.4, 1.1 Hz, 2 H), 7.50 (dd, J = 7.9, 1.0 Hz, 1 H), 7.46 (dd, J = 8.4, 7.8 Hz, 2 H), 7.34 (tt, J = 7.8, 1.1 Hz, 1 H), 7.33 (dd, J = 8.0, 1.0 Hz, 1 H), 7.21 (ddd, J = 8.0, 7.2, 1.0 Hz, 1 H), 7.15 (ddd, J = 7.9, 7.2, 1.0 Hz, 1 H), 4.34 (q, J = 7.1 Hz, 2 H), 1.39 (t, J = 7.1 Hz, 3 H). 13C NMR (151 MHz, CDCl3): δ = 153.8, 133.6, 130.6, 129.3, 128.1, 127.9, 126.4, 126.3, 123.4, 122.2, 120.8, 117.8, 111.6, 65.4, 14.5. Supplementary Material Supplementary Material Supporting Information