Subscribe to RSS
DOI: 10.1055/a-2029-0617
Structure–Activity Relationships for Hypervalent Iodine Electrocatalysis
The authors thank the Welch Foundation (A-1907) and the National Science Foundation (CAREER 1848135) for financial support.
Abstract
The design and optimization of novel electrocatalysts requires robust structure–activity data to correlate catalyst structure with electrochemical behavior. Aryl iodides have been gaining attention as metal-free electrocatalysts but experimental data are available for only a limited set of structures. Herein we report electrochemical data for a family of 70 aryl iodides. Half-peak potentials are utilized as proxies for reduction potentials and reveal that, despite differences in electrochemical reversibility, the potential for one-electron oxidation of 4-substituted aryl iodides to the corresponding iodanyl radicals is well-correlated with standard Hammett parameters. Additional data are presented for 3- and 2-substituted aryl iodides, including structures with potentially chelating 2-substituents that are commonly encountered in hypervalent iodine reagents. Finally, potential decomposition processes relevant to the (in)stability of iodanyl radicals are presented. We anticipate that the collected data will advance the design and application of aryl iodide electrocatalysis.
Key words
hypervalent iodine - electrochemistry - linear free-energy relationships - sustainable catalysis - oxidationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2029-0617.
- Supporting Information
Publication History
Received: 18 January 2023
Accepted: 06 February 2023
Accepted Manuscript online:
06 February 2023
Article published online:
16 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Frey B, Maity A, Tan H, Roychowdhury P, Powers DC. Iodine Catalysis in Organic Synthesis . Wiley-VCH; Weinheim: 2022: 335
- 2 Miller LL, Hoffmann AK. J. Am. Chem. Soc. 1967; 89: 593
- 3 Singh FV, Shetgaonkar SE, Krishnan M, Wirth T. Chem. Soc. Rev. 2022; 51: 8102
- 4 Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
- 5 Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds. John Wiley & Sons; Chichester: 2014
- 6 Fuchigami T, Fujita T. J. Org. Chem. 1994; 59: 7190
- 7 Kong X, Lin L, Chen X, Chen Y, Wang W, Xu B. ChemSusChem 2021; 14: 3277
- 8 Massignan L, Tan X, Meyer TH, Kuniyil R, Messinis AM, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 3184
- 9 Paveliev SA, Segida OO, Bityukov OV, Tang H.-T, Pan Y.-M, Nikishin GI, Terent’ev AO. Adv. Synth. Catal. 2022; 364: 3910
- 10 Hara S, Hatakeyama T, Chen S.-Q, Ishi-i K, Yoshida M, Sawaguchi M, Fukuhara T, Yoneda N. J. Fluorine Chem. 1998; 87: 189
- 11 Broese T, Francke R. Org. Lett. 2016; 18: 5896
- 12 Elsherbini M, Winterson B, Alharbi H, Folgueiras-Amador AA, Génot C, Wirth T. Angew. Chem. Int. Ed. 2019; 58: 9811
- 13 Elsherbini M, Wirth T. Chem. Eur. J. 2018; 24: 13399
- 14 Koleda O, Broese T, Noetzel J, Roemelt M, Suna E, Francke R. J. Org. Chem. 2017; 82: 11669
- 15 Sawamura T, Kuribayashi S, Inagi S, Fuchigami T. Adv. Synth. Catal. 2010; 352: 2757
- 16 Wirth T. Curr. Opin. Electrochem. 2021; 28: 100701
- 17 Maity A, Frey BL, Hoskinson ND, Powers DC. J. Am. Chem. Soc. 2020; 142: 4990
- 18 Frey BL, Figgins MT, Van Trieste GP. III, Carmieli R, Powers DC. J. Am. Chem. Soc. 2022; 144: 13913
- 19 Roth HG, Romero NA, Nicewicz DN. Synlett 2016; 27: 714
- 20 Ramos-Villaseñor J, Rodríguez-Cárdenas E, Díaz C, Frontana-Uribe B. J. Electrochem. Soc. 2020; 167: 155509
- 21 Shikata MT. Collect. Czech. Chem. Commun. 1938; 10: 368
- 22 Lin G, Liu YC, Lin YF, Wu YG. J. Enzyme Inhib. Med. Chem. 2004; 19: 395
- 23 The CV of 18 (2-phenol) is significantly broader than the CV of 3 (4-phenol), which makes it difficult to directly compare the Ep/2 values.
- 24 Ito M, Kubo H, Itani I, Morimoto K, Dohi T, Kita Y. J. Am. Chem. Soc. 2013; 135: 14078