Synthesis 2023; 55(13): 2091-2098
DOI: 10.1055/a-2035-2873
paper
Special Issue Honoring Prof. Guoqiang Lin's Contributions to Organic Chemistry

Visible-Light-Promoted C(sp3)–H Bond Functionalization toward Aminothiazole Skeletons from Active Methylene Ketones and Thioureas

a   School of Pharmaceutical and Chemical Engineering, Taizhou University, Shifu Avenue 1139, Jiaojiang, 318000, P. R. of China
,
Xiurong Hu
a   School of Pharmaceutical and Chemical Engineering, Taizhou University, Shifu Avenue 1139, Jiaojiang, 318000, P. R. of China
b   Department of Chemistry, Zhejiang Sci-Tech University, 2 Street 928, Hangzhou, 310018, P. R. of China
,
Huajiang Jiang
a   School of Pharmaceutical and Chemical Engineering, Taizhou University, Shifu Avenue 1139, Jiaojiang, 318000, P. R. of China
,
Haichang Guo
a   School of Pharmaceutical and Chemical Engineering, Taizhou University, Shifu Avenue 1139, Jiaojiang, 318000, P. R. of China
,
Lei Wang
a   School of Pharmaceutical and Chemical Engineering, Taizhou University, Shifu Avenue 1139, Jiaojiang, 318000, P. R. of China
c   Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Shifu Avenue 1139, Jiaojiang, 318000, P. R. of China
› Author Affiliations
We gratefully acknowledge the Natural Science Foundation of Zhejiang Province (LZ22B020003) and the National Natural Science Foundation of China (22071171) for financial support of this work.


This paper is dedicated to Professor Guoqiang Lin on the occasion of his 80th birthday.

Abstract

A novel and efficient visible-light-induced method is developed for the one-pot synthesis of functionalized 2-aminothiazoles from easily accessible active methylene ketone derivatives and different thioureas at room temperature. The mild reaction conditions, green chemistry, straightforward work-up, and high yields of the products make this procedure useful for the construction of 2-aminothiazole derivatives.

Supporting Information



Publication History

Received: 23 December 2022

Accepted after revision: 14 February 2023

Accepted Manuscript online:
14 February 2023

Article published online:
13 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany