Subscribe to RSS
DOI: 10.1055/a-2039-7985
Direct Arylation of C(sp2)–H Bonds in Anilines
Our work was supported by the Université Libre de Bruxelles (ULB), Federal Excellence of Science (EoS) program (BIOFACT, Grant No. O019618F), the Fondation Francqui - Stichting (Francqui Foundation), and the Research Foundation Flanders (Research Project Grant No. G0A2820N and Scientific Research Network).
Abstract
Anilines selectively arylated at their ortho, meta or para positions are useful building blocks in synthesis and have found applications in many areas. The most straightforward method for their synthesis relies on the direct arylation of a C(sp2)–H bond of anilines, an attractive strategy avoiding the prefunctionalization of the starting anilines provided that such arylations proceed with high levels of regioselectivity. Such reactions are presented and discussed, in a comprehensive manner, in this review article, with an emphasis on the regioselectivity of the processes and factors governing both the reactivity and selectivity.
1 Introduction
2 ortho-Arylation of Anilines
2.1 Direct C(sp2)–H ortho-Arylation of Anilines
2.2 Directed C(sp2)–H ortho-Arylation of Anilines
3 meta-Arylation of Anilines
4 para-Arylation of Anilines
4.1 Direct C(sp2)–H para-Arylation of Anilines via Oxidative Radical Homodimerization
4.2 Direct C(sp2)–H para-Arylation of Anilines via Transition-Metal Catalysis
5 Conclusion and Outlook
Publication History
Received: 17 January 2023
Accepted after revision: 21 February 2023
Accepted Manuscript online:
21 February 2023
Article published online:
24 April 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Kahl T, Schröder K.-W, Lawrence FR, Marhsall WJ, Höke H, Jäckh R. Aniline . In Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2011
- 1b Hartwig J, Shekhar S, Shen Q, Barrios-Ianderos F. In The Chemistry of Anilines . Rappoport Z. John Wiley & Sons; Chichester: 2007
- 1c Schranck J, Tlili A. ACS Catal. 2018; 8: 405
- 2a Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE. Science 2014; 344: 709
- 2b Becker J, Whittmann C. Biotechnol. Adv. 2019; 37: 107360
- 2c Blondiaux E, Bomon J, Smolén M, Kaval N, Lemière F, Sergeyev S, Diels L, Sels B, Maes BU. W. ACS Sustainable Chem. Eng. 2019; 7: 6906
- 3a Eicken K, Goetz N, Harreus A, Ammermann E, Lorenz G, Rang H. (BASF Aktiengesellschaft) US5480897, 1996
- 3b Mayer H, Golsch D, Isak H, Schröder J. (BASF Aktiengesellschaft) US7241896 B2, 2007
- 3c Takale BS, Thakore RR, Mallarapu R, Gallou F, Lipshutz BH. Org. Process Res. Dev. 2019; 24: 101
- 4a Highet RJ. J. Org. Chem. 1961; 26: 4767
- 4b Guo J.-J, Yang B.-J, Jing C.-X, Chen D.-Z, Hao X.-J. J. Chem. Res. 2017; 41: 202
- 5a Krane BD, Fagbule MO, Shamma M, Gözler B. J. Nat. Prod. 1984; 47: 1
- 5b Pallikonda G, Hsieh C.-Y, Su H.-L, Hsieh J.-C. Res. Chem. Intermed. 2019; 45: 5399
- 6a Elslager EF, Werbel LM. EP27679, 1981
- 6b Werbel LM, Cook PD, Elslager EF, Hung JH, Johnson JL, Kesten SJ, McNamara DJ, Ortwine DF, Worth DF. J. Med. Chem. 1986; 29: 924
- 6c O’Neill PM, Willock DJ, Hawley SR, Bray PG, Storr RC, Ward SA, Park BK. J. Med. Chem. 1997; 40: 437
- 7a Bussel JB, Cheng G, Saleh MN, Psaila B, Kovaleva L, Meddeb B, Kloczko J, Hassani H, Mayer B, Stone NL, Arning M, Provan D, Jenkins JM. N. Eng. J. Med. 2007; 357: 2237
- 7b Erickson-Miller CL, Jenkins J, Dickens T. WO2008073864, 2008
- 8 Lin JT, Chen P.-C, Yen Y.-S, Hsu Y.-C, Chou H.-H, Yeh M.-CP. Org. Lett. 2009; 11: 97
- 9a Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Farooq Zia M, Wencel-Delord J, Bessey T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 660
- 9b Jacob C, Maes BU. W, Evano G. Chem. Eur. J. 2021; 27: 13899
- 10 Hartwig JF, Larsen MA. ACS Cent. Sci. 2016; 2: 281
- 11 Sterckx H, Morel B, Maes BU. W. Angew. Chem. Int. Ed. 2019; 58: 7946
- 12 Monteith ER, Mampuys P, Summerton L, Clark JH, Maes BU. W, McElroy CR. Green Chem. 2020; 22: 123
- 13a Franck P, Hostyn S, Dajka-Halász B, Polonka-Bálint Á, Monsieurs K, Mátyus P, Maes BU. W. Tetrahedron 2008; 64: 6030
- 13b Jonckers TH. M, Maes BU. W, Lemière GL. F, Rombouts G, Pieters L, Haemers A, Dommisse RA. Synlett 2003; 615
- 13c Liégault B, Lee D, Huestis MP, Stuart DR, Fagnou K. J. Org. Chem. 2008; 73: 5022
- 14a Gadde K, De Vos D, Maes BU. W. Synthesis 2023; 55: 164
- 14b De Vos D, Gadde K, Maes BU. W. Synthesis 2023; 55: 193
- 15 Ohashi M, Suwa S, Osawa Y, Tsujimoto K. J. Chem. Soc., Perkin Trans. 1 1979; 2219
- 16a Chen Q.-Y, Li Z.-T. J. Org. Chem. 1993; 58: 2599
- 16b Chen Q.-Y, Li Z.-T. J. Chem. Soc., Perkin Trans. 1 1993; 1705
- 16c Chen Q.-Y, Li Z.-T. J. Fluorine Chem. 1994; 66: 59
- 17 Marzo L, Wang S, König B. Org. Lett. 2017; 19: 5976
- 18 Kapoor R, Chawla R, Yadav LD. S. Tetrahedron Lett. 2019; 60: 805
- 19 Ghosh I, Shaikh RS, König B. Angew. Chem. Int. Ed. 2017; 56: 8544
- 20a Wetzel A, Ehrhardt V, Heinrich MR. Angew. Chem. Int. Ed. 2008; 47: 9130
- 20b Pratsch G, Wallaschkowski T, Heinrich MR. Chem. Eur. J. 2012; 18: 11555
- 20c Hofmann J, Gans E, Clarck T, Heinrich MR. Chem. Eur. J. 2017; 23: 9647
- 21a Begtrup M, Rasmussen LK. Arylhydrazines . In Science of Synthesis . Ramsden CA, Bellus D. Georg Thieme Verlag KG; Stuttgart: 2007
- 21b Rademacher P. Hydrazines and Hydrazinium Salts . In Science of Synthesis . Enders D, Schaumann E. Georg Thieme Verlag KG; Stuttgart: 2009
- 22 Nefedov VA, German NA, Lutsenko AI, Nikishin IG. Zh. Org. Khim. 1987; 23: 172 ; J. Org. Chem. USSR (Engl. Transl.) 1987, 23, 154
- 23 Hofmann J, Jasch H, Heinrich MR. J. Org. Chem. 2012; 77: 10699
- 24 Hofmann J, Clark T, Heinrich MR. J. Org. Chem. 2016; 81: 9785
- 25a Hofmann J, Jasch H, Heinrich MR. J. Org. Chem. 2014; 79: 2314
- 25b Jiang T, Chen S.-Y, Zhuang H, Zeng R.-S, Zou J.-P. Tetrahedron Lett. 2014; 55: 4549
- 25c Taniguchi T, Imoto M, Takeda M, Nakai T, Mihara M, Mizuno T, Nomoto A. Synthesis 2017; 49: 1623
- 26 Jiang T, Chen S.-Y, Zhang G.-Y, Zeng R.-S, Zou J.-P. Org. Biomol. Chem. 2014; 12: 6922
- 27a Chandrasekharam M, Chiranjeevi B, Gupta KS. V, Sridhar B. J. Org. Chem. 2011; 76: 10229
- 27b Chiranjeevi B, Koyyada G, Prabusreenivasan S, Kumar V, Sujitha P, Kumar CG, Sridhar B, Shaik S, Chandrasekharam M. RSC Adv. 2013; 3: 16475
- 27c Akondi AM, Trivedi R, Sreedhar B, Kantam ML, Bhargava S. Catal. Today 2012; 198: 35
- 27d Berkessa SC, Clarke ZJ. F, Fotie J, Bohle DS, Grimm CC. Tetrahedron Lett. 2016; 57: 1613
- 27e Purtsas A, Kataeva O, Knölker H.-J. Chem. Eur. J. 2020; 26: 1499
- 27f Paniak TJ, Kozlowski MC. Org. Lett. 2020; 22: 1765
- 27g Vershinin V, Pappo D. Org. Lett. 2020; 22: 1941
- 27h Elsler B, Wiebe A, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Chem. Eur. J. 2015; 21: 12321
- 28 Barton DH. R, Finet J.-P, Giannotti C, Halley F. J. Chem. Soc., Perkin Trans. 1 1987; 241
- 29a Saito S, Kano T, Ohyabu Y, Yamamoto H. Synlett 2000; 1676
- 29b Kano T, Ohyabu Y, Saito S, Yamamoto H. J. Am. Chem. Soc. 2002; 124: 5365
- 30 Bardwell DA, Jeffery JC, Schatz E, Tilley EE. M, Ward MD. J. Chem. Soc. Dalton Trans 1995; 825
- 31a Murahashi S.-I, Yamamura M, Yanagisawa K.-I, Mita N, Kondo K. J. Org. Chem. 1979; 44: 2408
- 31b Xiong X, Zhu R, Huang L, Chang S, Huang J. Synlett 2017; 28: 2046
- 32 Pinilla C, Salamanca V, Lledós A, Albéniz AC. ACS Catal. 2022; 12: 14527
- 33a Ciana C.-L, Phipps RJ, Brandt JR, Meyer F.-M, Gaunt MJ. Angew. Chem. Int. Ed. 2011; 50: 458
- 33b Fox JC, Gilligan RE, Pitts AK, Bennett HR, Gaunt MJ. Chem. Sci. 2014; 7: 2706
- 34 Matsumoto K, Toubaru Y, Tachikawa S, Miki A, Sakai K, Koroki S, Hirokane T, Shindo M, Yoshida M. J. Org. Chem. 2020; 85: 15154
- 35 Fritsche RF, Schuh T, Kataeva O, Knölker H.-J. Chem. Eur. J. 2022; 29: e202203269
- 36 Odedra A, Wu C.-J, Pratap TB, Huang C.-W, Ran Y.-F, Liu R.-S. J. Am. Chem. Soc. 2005; 127: 3406
- 37a Pirali T, Zhang F, Miller AH, Head JL, McAusland D, Greaney MF. Angew. Chem. Int. Ed. 2012; 51: 1006
- 37b Mesgar M, Daugulis O. Org. Lett. 2016; 18: 3910
- 37c Truong T, Daugulis O. Org. Lett. 2012; 14: 5964
- 38 Yanagi T, Nogi K, Yorimitsu H. Chem. Eur. J. 2020; 26: 783
- 39a Guizzardi B, Mella M, Fagnoni M, Freccero M, Albini A. J. Org. Chem. 2001; 66: 6353
- 39b Guizzardi B, Mella M, Fagnoni M, Albini A. J. Org. Chem. 2003; 68: 1067
- 40 Guo H.-M, Li P, Niu H.-Y, Wang D.-C, Qu G.-R. J. Org. Chem. 2010; 75: 6016
- 41 Maiti S, Achar TK, Mal P. Org. Lett. 2017; 19: 2006
- 42a Tischler O, Tóth B, Novák Z. Chem. Rec. 2017; 17: 184
- 42b Leitch JA, Frost CG. Synthesis 2018; 50: 2693
- 43a Kalyani D, Deprez NR, Desai LV, Sanford MS. J. Am. Chem. Soc. 2005; 127: 7330
- 43b Desai LV, Stowers KJ, Sanford MS. J. Am. Chem. Soc. 2008; 130: 13285
- 43c Deprez NR, Sanford MS. J. Am. Chem. Soc. 2009; 131: 11234
- 44a Daugulis O, Zaitsev VG. Angew. Chem. Int. Ed. 2005; 44: 4046
- 44b Shabashov D, Daugulis O. J. Org. Chem. 2007; 72: 7720
- 45a Zhang G.-Z, Chen C.-Q, Feng X.-H, Huang G.-S. J. Chem. Sci. 2010; 122: 149
- 45b Su L, Guo D.-D, Li B, Guo S.-H, Pan G.-F, Gao Y.-R, Wang Y.-Q. ChemCatChem 2017; 9: 2001
- 45c Sahoo K, Pradhan P, Panda N. Org. Biomol. Chem. 2020; 18: 1820
- 46 Haridharan R, Muralirajan K, Cheng C.-H. Adv. Synth. Catal. 2015; 357: 366
- 47 Li D, Xu N, Zhang Y, Wang L. Chem. Commun. 2014; 50: 14862
- 48 Dabiri M, Alavioon SI, Movahed SK. Eur. J. Org. Chem. 2019; 1479
- 49 Monzón G, Tirotta I, Knochel P. Angew. Chem. Int. Ed. 2012; 51: 10624
- 50 Shi Z, Li B, Wan X, Cheng J, Fang Z, Cao B, Qin C, Wang Y. Angew. Chem. Int. Ed. 2007; 46: 5554
- 51 Chu J.-H, Tsai S.-T, Wu M.-J. Synthesis 2009; 3757
- 52 Ren L, Chu W, Guan D, Hou Y, Wang M, Yuan X, Sun Z. Appl. Organomet. Chem. 2014; 28: 673
- 53a Chinnagolla RK, Jeganmohan M. Chem. Commun. 2014; 50: 2442
- 53b Hubrich J, Himmler T, Rodefeld L, Ackermann L. Adv. Synth. Catal. 2015; 357: 474
- 54 Yang S, Li B, Wan X, Shi Z. J. Am. Chem. Soc. 2007; 129: 6066
- 55 Li B.-J, Tian S.-L, Fang Z, Shi Z.-J. Angew. Chem. Int. Ed. 2008; 47: 1115
- 56 Brasche G, García-Fortanet J, Buchwald SL. Org. Lett. 2008; 10: 2207
- 57a Yeung CS, Zhao X, Borduas N, Dong VM. Chem. Sci. 2010; 1: 331
- 57b Yang F, Song F, Li W, Lan J, You J. RSC Adv. 2013; 3: 9649
- 58 Kianmehr E, Fardpour M, Kharat AN. Eur. J. Org. Chem. 2017; 3017
- 59 Xu H, Shang M, Dai H.-X, Yu J.-Q. Org. Lett. 2015; 17: 3830
- 60 Lou S.-J, Mao Y.-J, Xu D.-Q, He J.-Q, Chen Q, Xu Z.-Y. ACS Catal. 2016; 6: 3890
- 61 Zhu R, Lu S, Wang Q, Bai J, Wang Y, Yu Q, Huang J. Tetrahedron 2018; 74: 3879
- 62a Fujimoto S, Matsumoto K, Iwata T, Shindo M. Tetrahedron Lett. 2017; 58: 973
- 62b Zhang C, Song Y, Sang Z, Zhan L, Rao Y. J. Org. Chem. 2018; 83: 2582
- 62c Mei C, Zhao M, Lu W. J. Org. Chem. 2021; 86: 2714
- 63a Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566
- 63b Neufeldt SR, Sanford MS. Adv. Synth. Catal. 2012; 354: 3517
- 64 Jiang J, Zhang W.-M, Dai J.-J, Xu J, Xu H.-J. J. Org. Chem. 2017; 82: 3622
- 65 Sahoo MK, Midya SP, Landge VG, Balaraman E. Green Chem. 2017; 19: 2111
- 66 Mei L, Veleta JM, Gianetti TL. J. Am. Chem. Soc. 2020; 142: 12056
- 67a Nishikata T, Abela AR, Huang S, Lipshutz BH. J. Am. Chem. Soc. 2010; 132: 4978
- 67b Nishikata T, Abela AR, Huang S, Lipshutz BH. Beilstein J. Org. Chem. 2016; 12: 1040
- 68 Jiang P, Li F, Xu Y, Liu Q, Wang J, Ding H, Yu R, Wang Q. Org. Lett. 2015; 17: 5918
- 69a Nishikata T, Abela AR, Lipshutz BH. Angew. Chem. Int. Ed. 2010; 49: 781
- 69b Lipshutz BH, Ghorai S, Abela AR, Moser R, Nishikata T, Duplais C, Krasovskiy A, Gaston RD, Gadwood RC. J. Org. Chem. 2011; 76: 4379
- 69c Gabriel CM, Lee NR, Bigorne F, Klumphu P, Parmentier M, Gallou F, Lipshutz BH. J. Org. Chem. 2017; 19: 194
- 70 Babu SS, Shahid M, Gopinath P. Chem. Commun. 2020; 56: 5985
- 71 Yeung CS, Dong VM. Synlett 2011; 974
- 72 Uhlig N, Li C.-J. Chem. Eur. J. 2014; 20: 12066
- 73 Polley A, Varalaxmi K, Jana R. ACS Omega 2018; 3: 14503
- 74 Wan C, Zhao J, Xu M, Huang J. J. Org. Chem. 2014; 79: 4751
- 75 Chu J.-H, Lin P.-S, Lee Y.-M, Shen W.-T, Ming M.-J. Chem. Eur. J. 2011; 17: 13613
- 76 Koley M, Dastbaravardeh N, Schnürch M, Mihovilovic MD. ChemCatChem 2012; 4: 1345
- 77 For a general method for removal of a pyridine directing group, see: Smout V, Peschiulli A, Verbeeck S, Mitchell EA, Herrebout W, Bultinck P, Vande Velde CM. L, Berthelot D, Meerpoel L, Maes BU. W. J. Org. Chem. 2013; 78: 9803
- 78 Chu J.-H, Huang H.-P, Hsu W.-T, Chen S.-T, Wu M.-J. Organometallics 2014; 33: 1190
- 79 Miyamura S, Tsurugi H, Satoh T, Miura M. J. Organomet. Chem. 2008; 693: 2438
- 80 Qian C, Lin D, Deng Y, Zhang X.-Q, Jiang H, Miao G, Tang X, Zeng W. Org. Biomol. Chem. 2014; 12: 5866
- 81 Li M, Ye Y. ChemCatChem 2015; 7: 4137
- 82 Hubrich J, Himmler T, Rodefeld L, Ackermann L. ACS Catal. 2015; 5: 4089
- 83 Liu Z, Xian Y, Lan J, Luo Y, Ma W, You J. Org. Lett. 2019; 21: 1037
- 84 Reddy BV. S, Reddy CR, Reddy MR, Yarlagadda S, Sridhar B. Org. Lett. 2015; 17: 3730
- 85 Shao J, Chen W, Giulianotti MA, Houghten RA, Yu Y. Org. Lett. 2012; 14: 5452
- 86 Chary BC, Kim S, Park Y, Kim J, Lee PH. Org. Lett. 2013; 15: 2692
- 87 Wang P.-L, Wang Y, Li Y, Wang X.-S. Chem. Asian J. 2020; 15: 3825
- 88a For a review concerning meta-functionalization of arenes using palladium catalysis, see: Dey A, Agasti S, Maiti D. Org. Biomol. Chem. 2016; 14: 5440
- 88b For a review concerning distal C(sp2)–H functionalization of arenes, see: Dutta U, Maiti S, Bhattacharya T, Maiti D. Science 2021; 372: 701
- 88c For a review concerning meta- and para-selective C–H functionalization of arenes using transient mediators and non-covalent directing groups, see: Ghosh M, De Sarkar SD. Asian J. Org. Chem. 2018; 7: 1236
- 89 Phipps RJ, Gaunt MJ. Science 2009; 323: 1593
- 90a Chen B, Hou X.-L, Li Y.-X, Wu Y.-D. J. Am. Chem. Soc. 2011; 133: 7668
- 90b Deng C, Zhang J.-X, Lin Z. ACS Catal. 2018; 8: 2498
- 91 Gemoets HP. L, Laudadio G, Verstraete K, Hessel V, Noël T. Angew. Chem. Int. Ed. 2017; 56: 7161
- 92 Lee EY, Park J. ChemCatChem 2011; 3: 1127
- 93 Mathew BP, Yang HJ, Jeon H, Lee JH, Kim JC, Shin TJ, Myung K, Kwak SK, Kwak JH, Hong SY. J. Mol. Catal. A: Chem. 2016; 417: 64
- 94 Vásquez-Céspedes S, Holtkamp M, Karst U, Glorius F. Synlett 2017; 28: 2759
- 95a Catellani M, Frignani F, Rangoni A. Angew. Chem. Int. Ed. 1997; 36: 119
- 95b For a recent review concerning the Catellani reaction, see: Li R, Dong G. J. Am. Chem. Soc. 2020; 142: 17859
- 96 Wang P, Farmer ME, Huo X, Jain P, Shen P.-X, Ishoey M, Bradner JE, Wisniewski SR, Eastgate MD, Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 9269
- 97 For a seminal example of pyridinone-type-ligand-enabled meta-C–H activation, see: Wang X.-C, Gong W, Fang L.-Z, Zhu R.-Y, Li S, Engle KM, Yu J.-Q. Nature 2015; 519: 334
- 98 Nakamura I, Tashiro H, Ishida Y, Terada M. Org. Lett. 2020; 22: 3794
- 99 For a review concerning directing-group-assisted para-C–H functionalization of arenes, see: Sasmal S, Dutta U, Lahiri GK, Maiti D. Chem. Lett. 2020; 49: 1406
- 100a Johnson GE, McGrane KM, Stolka M. Pure Appl. Chem. 1995; 67: 175
- 100b Noda T, Ogawa H, Noma N, Shirota Y. J. Mater. Chem. 1999; 9: 2177
- 101 Horowitz G. J. Mater. Chem. 1999; 9: 2177
- 102 Cariciftci NS, Smilowitz L, Heeger AJ, Wudl F. Science 1992; 258: 1474
- 103a Getautis V, Stanisauskaite A, Paliulis O, Uss S, Uss V. J. Prakt. Chem. 2000; 342: 58
- 103b Goodbrand HC, Hu N.-H. J. Org. Chem. 1999; 64: 670
- 103c O’Brien DF, Burrows PE, Forrest SR, Koene BE, Loy DE, Thompson ME. Adv. Mater. 1998; 10: 1108
- 104a Mizoguchi T, Adams RN. J. Am. Chem. Soc. 1962; 84: 2058
- 104b Vettorazzi N, Fernandez H, Silber JJ, Sereno L. Electrochim. Acta 1990; 35: 1081
- 105 Imaizumi H, Sekiguchi S, Matsui K. Bull. Chem. Soc. Jpn. 1977; 50: 948
- 106 Periasamy M, Jayakumar KN, Bharati P. J. Org. Chem. 2000; 65: 3548
- 107 Vitale P, Di Nunno L, Scilimati A. ARKIVOC 2013; (iii): 36
- 108 Jiang Y, Xi C, Yang X. Synlett 2005; 1381
- 109 Ling X, Xiong Y, Huang R, Zhang X, Zhang S, Chen C. J. Org. Chem. 2013; 78: 5218
- 110 Xi C, Jiang Y, Yang X. Tetrahedron Lett. 2005; 46: 3909
- 111 Yang X, Xi C, Jiang Y. Synth. Commun. 2006; 36: 2413
- 112 Kirchgessner M, Sreenath K, Gopidas KR. J. Org. Chem. 2006; 71: 9849
- 113 Saito T, Yoshida S, Ichikawa J. Org. Lett. 2004; 6: 4563
- 114 Luo M.-J, Li Y, Ouyang X.-H, Li J.-H, He D.-L. Chem. Commun. 2020; 56: 2707
- 115 Liu X, Cai T.-C, Guo D, Wanf B.-B, Ying S, Wang H, Tang S, Shen Q, Gui Q.-W. Tetrahedron Lett. 2021; 70: 153021
- 116 Lichte D, Pirkl N, Heinrich G, Dutta S, Goebel JF, Koley D, Gooßen LJ. Angew. Chem. Int. Ed. 2022; 61: e202210009
- 117 For a representative example of aromatic C–H functionalization promoted by thianthrenation, see: Berger F, Plutschack MB, Riegger J, Yu W, Speicher S, Ho M, Frank N, Ritter T. Nature 2019; 567: 223
- 118 Chen X.-Y, Nie X.-X, Wu Y, Wang P. Chem. Commun. 2020; 56: 5058
For recent review articles on the use of directing groups in C–H functionalization, see:
For representative examples, see:
For recent reviews concerning visible-light photocatalysis applied to organic synthesis, see:
For literature concerning the preparation of (aryl)hydrazines, see:
For recent review articles on the C–H functionalization of anilines, see: