Subscribe to RSS
DOI: 10.1055/a-2059-3372
A Direct Arylation Approach for the Preparation of Benzothiadiazole-Based Fluorophores for Application in Luminescent Solar Concentrators
We thank the National Research Council of Italy (‘FluoCom’ project, ‘Progetti di Ricerca @CNR’ call) for financial support.
Dedicated to Prof. Masahiro Murakami on the occasion of his retirement from Kyoto University
Abstract
A straightforward synthetic protocol featuring direct C–H arylations as key steps has been optimized to prepare two benzo-2,1,3-thiadiazole (BTD)-based organic fluorophores. Their light absorption and emission properties, as well as their affinity with poly(methyl methacrylate) as the chosen polymer matrix, were found to be suitable for application in luminescent solar concentrators. Solar-concentration devices were fabricated with both emitters, and their relevant optical and photovoltaic properties are presented.
Key words
direct arylation - fluorophores - benzothiadiazoles - luminescent solar concentrator - photovoltaicsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2059-3372.
- Supporting Information
Publication History
Received: 25 January 2023
Accepted after revision: 21 March 2023
Accepted Manuscript online:
21 March 2023
Article published online:
17 April 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Chen D, Li W, Gan L, Wang Z, Li M, Su S.-J. Mater. Sci. Eng., R 2020; 142: 100581
- 2 Liu D.-S, Wu J, Xu H, Wang Z. Adv. Mater. (Weinheim, Ger.) 2021; 33: 2003733
- 3 Murawski C, Gather MC. Adv. Opt. Mater. 2021; 9: 2100269
- 4 Manzhos S, Chueh C.-C, Giorgi G, Kubo T, Saianand G, Lüder J, Sonar P, Ihara M. J. Phys. Chem. Lett. 2021; 12: 4638
- 5 Batchelder JS, Zewail AH, Cole T. Appl. Opt. 1979; 18: 3090
- 6 Weber WH, Lambe J. Appl. Opt. 1976; 15: 2299
- 7 Meinardi F, Bruni F, Brovelli S. Nat. Rev. Mater. 2017; 2: 17072
- 8 Roncali J. Adv. Energy Mater. 2020; 10: 2001907
- 9 Papucci C, Geervliet TA, Franchi D, Bettucci O, Mordini A, Reginato G, Picchioni F, Pucci A, Calamante M, Zani L. Eur. J. Org. Chem. 2018; 2657
- 10 Papucci C, Dessì A, Coppola C, Sinicropi A, Santi G, Di Donato M, Taddei M, Foggi P, Zani L, Reginato G, Pucci A, Calamante M, Mordini A. Dyes Pigm. 2021; 188: 109207
- 11 Goti G, Calamante M, Coppola C, Dessì A, Franchi D, Mordini A, Sinicropi A, Zani L, Reginato G. Eur. J. Org. Chem. 2021; 2655
- 12 Yzeiri X, Calamante M, Dessì A, Franchi D, Pucci A, Ventura F, Reginato G, Zani L, Mordini A. Molecules 2021; 26: 5428
- 13 Clarke TM, Gordon KC, Kwok WM, Phillips DL, Officer DL. J. Phys. Chem. A 2006; 110: 7696
- 14 Debije MG, Verbunt PP. C. Adv. Energy Mater. 2012; 2: 12
- 15 Papucci C, Charaf R, Coppola C, Sinicropi A, Di Donato M, Taddei M, Foggi P, Battisti A, De Jong B, Zani L, Mordini A, Pucci A, Calamante M, Reginato G. J. Mater. Chem. C 2021; 9: 15608
- 16 Gorjian S, Bousi E, Özdemir ÖE, Trommsdorff M, Kumar NM, Anand A, Kant K, Chopra SS. Renewable Sustainable Energy Rev. 2022; 158: 112126
- 17 Raeisossadati M, Moheimani NR, Parlevliet D. Renewable Sustainable Energy Rev. 2019; 101: 47
- 18 Yang D, Wang H, Sun C, Zhao H, Hu K, Qin W, Ma R, Yin F, Qin X, Zhang Q, Liang Y, Li Z. Chem. Sci. 2017; 8: 6322
- 19 Bohra H, Wang M. J. Mater. Chem. A 2017; 5: 11550
- 20 Parisi ML, Dessì A, Zani L, Maranghi S, Mohammadpourasl S, Calamante M, Mordini A, Basosi R, Reginato G, Sinicropi A. Front. Chem. 2020; 8: 214
- 21a Nitti A, Bianchi G, Po R, Swager TM, Pasini D. J. Am. Chem. Soc. 2017; 139: 8788
- 21b Nitti A, Osw P, Calcagno G, Botta C, Etkind SI, Bianchi G, Po R, Swager TM, Pasini D. Org. Lett. 2020; 22: 3263
- 21c Bianchi G, Carbonera C, Ciammaruchi L, Camaioni N, Negarville N, Tinti F, Forti G, Nitti A, Pasini D, Facchetti A, Pankow RM, Marks TJ, Po R. Sol. RRL 2022; 6: 2200643
- 22 Kerszulis JA, Bulloch RH, Teran NB, Wolfe RM. W, Reynolds JR. Macromolecules 2016; 49: 6350
- 23 Martín R, Prieto P, Carrillo JR, Rodríguez AM, de Cozar A, Boj PG, Díaz-García MA, Ramírez MG. J. Mater. Chem. C 2019; 7: 9996
- 24 Green AP, Buckley AR. Phys. Chem. Chem. Phys. 2015; 17: 1435
- 25 Debije MG, Evans RC, Griffini G. Energy Environ. Sci. 2021; 14: 293
- 26 Corsini F, Nitti A, Tatsi E, Mattioli G, Botta C, Pasini D, Griffini G. Adv. Opt. Mater. 2021; 9: 2100182
- 27 Ceriani C, Corsini F, Mattioli G, Mattiello S, Testa D, Po R, Botta C, Griffini G, Beverina L. J. Mater. Chem. C 2021; 9: 14815
- 28 Rosadoni E, Bellina F, Lessi M, Micheletti C, Ventura F, Pucci A. Dyes Pigm. 2022; 201: 110262
- 29 Meti P, Mateen F, Hwang DY, Lee Y.-E, Hong S.-K, Gong Y.-D. Dyes Pigm. 2022; 202: 110221
- 30 Mateen F, Meti P, Hwang D.-Y, Swelm W, Algarni H, Al-Sehemi AG, Kim Y.-C, Gong Y.-D, Hong S.-K. Dyes Pigm. 2022; 205: 110563
- 31 4,7-Bis[7-(9,9-dibutyl-9H-fluoren-2-yl)-2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl]-2,1,3-benzothiadiazole (LSCA1); Typical Procedure In a Schlenk tube under N2, compound 3a (122 mg, 0.3 mmol, 1.0 equiv) was dissolved in anhyd toluene together with 2-bromo-9-dibutylfluorene (4; 230 mg, 0.64 mmol, 2.2 equiv), Pd(OAc)2 (3 mg, 0.015 mmol, 0.05 equiv), CataCXium A (11 mg, 0.03 mmol, 0.1 equiv), PivOH (1 mg, 0.1 mmol, 0.3 equiv), and Cs2CO3 (156 mg, 0.45 mmol, 1.5 equiv). The mixture was heated at 95 °C for 18 h, then cooled to r.t., filtered through Celite, and washed with EtOAc (30 mL). The organic phase was washed with H2O (2 × 10 mL) and brine (10 mL), then dried (Na2SO4) and concentrated. The crude solid was purified by flash column chromatography [silica gel, PE–DCM (3:1)] to give a violet solid; yield: 262 mg (0.27 mmol, 90%). 1H NMR (400 MHz, CD2Cl2): δ = 8.52 (s, 2 H), 7.90 (dd, J = 7.9, 1.2 Hz, 2 H), 7.83 (s, 2 H), 7.76–7.71 (m, 4 H), 7.40–7.29 (m, 6 H), 4.47–4.42 (m, 8 H), 2.05 (dt, J = 11.3, 5.0 Hz, 8 H), 1.15–1.06 (m, 8 H), 0.71–0.57 (m, 20 H). 13C NMR (100 MHz, CD2Cl2): δ = 152.9, 151.7, 151.4, 141.8, 141.3, 140.5, 138.8, 132.5, 127.5, 127.3, 127.0, 125.7, 123.8, 123.4, 120.9, 120.5, 120.2, 120.1, 112.0, 65.5, 65.1, 55.6, 40.7, 26.6, 23.6, 14.2. HRMS (ESI): m/z [M∙+] calcd for C60H60N2O4S3: 968.3710; found: 968.3715.