Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00025710.xml
Sportphysio 2023; 11(04): 169-178
DOI: 10.1055/a-2095-9207
DOI: 10.1055/a-2095-9207
Focus
Vertiefung
Effekte von geschwindigkeitsbasiertem Krafttraining auf Sprung-, Sprint- und Kraftleistungen
Geschwindigkeitsbasiertes Krafttraining verbessert die Sprung-, Spring- und Kraftleistung. Die Autoren haben verschiedene Studien miteinander verglichen, um herauszufinden, ob die Trainingseffekte hierbei besser sind als bei traditionellem Krafttraining.
Publication History
Article published online:
31 August 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Andersen LL, Andersen JL, Zebis MK. et al. Early and late rate of force development: differential adaptive responses to resistance training?. Scand J Med Sci Sports 2010; 20: e162-e169 DOI: 10.1111/j.1600-0838.2009.00933.x.
- 2 Andersen V, Paulsen G, Stien N. et al. Resistance training with different velocity loss thresholds induce similar changes in strength and hypertrophy. J Strength Cond Res. 2021 DOI: 10.1519/JSC.0000000000004067
- 3 Baena-Marín M, Rojas-Jaramillo A, González-Santamaría J. et al. Velocity-based resistance training on 1-RM, jump and sprint performance: A systematic review of clinical trials. Sports (Basel) 2022; 10: 8 DOI: 10.3390/sports10010008.
- 4 Banyard HG, Tufano JJ, Weakley JJS. et al. Superior changes in jump, sprint, and change-of-direction performance but not maximal strength following 6 weeks of velocity-based training compared with 1-Repetition-Maximum percentage-based training. Int J Sports Physiol Perform 2021; 16: 232-242 DOI: 10.1123/ijspp.2019-0999.
- 5 Caldwell DM, Ades AE, Higgins JPT. Simultaneous comparison of multiple treatments: Combining direct and indirect evidence. BMJ 2005; 331: 897-900
- 6 Cohen J. Statistical power analysis for the behavioral sciences. New York, NY, USA: Routledge; 1988
- 7 Dorrell HF, Smith MF, Gee TI. Comparison of velocity-based and traditional percentage-based loading methods on maximal strength and power adaptations. J Strength Cond Res 2020; 34: 46-53 DOI: 10.1519/JSC.0000000000003089.
- 8 Drury B, Clarke H, Moran J. et al. Eccentric resistance training in youth: A survey of perceptions and current practices by strength and conditioning coaches. JFMK 2021; 6: 21 DOI: 10.3390/jfmk6010021.
- 9 Egger M, Smith GD, Schneider M. et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-634 DOI: 10.1136/bmj.315.7109.629.
- 10 Faul F, Erdfelder E, Lang A-G. et al. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007; 39: 175-191 DOI: 10.3758/bf03193146.
- 11 Galiano C, Pareja-Blanco F, Hidalgo de Mora J. et al. Low-velocity loss induces similar strength gains to moderate-velocity loss during resistance training. J Strength Cond Res. 2020 Publish Ahead of Print DOI: 10.1519/JSC.0000000000003487
- 12 García-Ramos A, Haff GG, Pestaña-Melero FL. et al. Feasibility of the 2-point method for determining the 1-Repetition Maximum in the bench press exercise. Int J Sports Physiol Perform 2018; 13: 474-481 DOI: 10.1123/ijspp.2017-0374.
- 13 Gehlert S, Bloch W, Suhr F. Ca2+-dependent regulations and signaling in skeletal muscle: From electro-mechanical coupling to adaptation. Int J Mol Sci 2015; 16: 1066-1095 DOI: 10.3390/ijms16011066.
- 14 Grgic J, Schoenfeld BJ, Orazem J. et al. Effects of resistance training performed to repetition failure or non-failure on muscular strength and hypertrophy: A systematic review and meta-analysis. J Sport Health Sci. 2021 S2095254621000077 DOI: 10.1016/j.jshs.2021.01.007
- 15 González-Badillo JJ, Sánchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med 2010; 31: 347-352 DOI: 10.1055/s-0030-1248333.
- 16 Healy R, Kenny IC, Harrison AJ. Resistance training practices of sprint coaches. J Strength Cond Res. 2019 Publish Ahead of Print DOI: 10.1519/JSC.0000000000002992
- 17 Hecksteden A, Forster S, Egger F. et al. Dwarfs on the shoulders of giants: Bayesian analysis with informative priors in elite sports research and decision making. Front Sports Act Living 2022; 4: 793603 DOI: 10.3389/fspor.2022.793603.
- 18 Hecksteden A, Kellner R, Donath L. Dealing with small samples in football research. Sci Med Footb 2021; 0: 1-9 DOI: 10.1080/24733938.2021.1978106.
- 19 Hecksteden A, Kraushaar J, Scharhag-Rosenberger F. et al. Individual response to exercise training – a statistical perspective. J Appl Physiol 2015; 118: 1450-1459 DOI: 10.1152/japplphysiol.00714.2014.
- 20 Hecksteden A, Pitsch W, Rosenberger F. et al. Repeated testing for the assessment of individual response to exercise training. J Appl Physiol 2018; 124: 1567-1579 DOI: 10.1152/japplphysiol.00896.2017.
- 21 Held S, Rappelt L, Deutsch J-P. et al. Valid and reliable barbell velocity estimation using an inertial measurement unit. Int J Environ Res Public Health 2021; 18: 9170 DOI: 10.3390/ijerph18179170.
- 22 Held S, Hecksteden A, Meyer T. et al. Improved strength and recovery after velocity-based training: A randomized controlled trial. Int J Sports Physiol Perform 2021; 16: 1185-1193 DOI: 10.1123/ijspp.2020-0451.
- 23 Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21: 1539-1558 DOI: 10.1002/sim.1186.
- 24 Higgins J, Squier K, Alfredson H. et al. Data collections forms for intervention reviews: Cochrane handbook for systematic reviews of interventions. In: The Cochrane Collaboration. 2011
- 25 Hutton B, Salanti G, Caldwell DM. et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 2015; 162 (11) 777-84 DOI: 10.7326/M14-2385.
- 26 Izquierdo-Gabarren M, González de Txabarri Expósito R, García-Pallarés J. et al. Concurrent endurance and strength training not to failure optimizes performance gains. Med Sci Sports Exerc 2009; 42: 1 DOI: 10.1249/MSS.0b013e3181c67eec.
- 27 Jiménez-Reyes P, Castaño-Zambudio A, Cuadrado-Peñafiel V. et al. Differences between adjusted vs. non-adjusted loads in velocity-based training: Consequences for strength training control and programming. PeerJ 2021; 9: e10942 DOI: 10.7717/peerj.10942.
- 28 Jovanović M, Flanagan DEP. Researched applications of velocity based strength training. 2014; 21: 12
- 29 Kiely J. Periodization paradigms in the 21st century: Evidence-led or tradition-driven?. Int J Sports Physiol Perform 2012; 7: 242-250 DOI: 10.1123/ijspp.7.3.242.
- 30 Laffaye G, Wagner PP, Tombleson TIL. Countermovement jump height: Gender and sport-specific differences in the force-time variables. J Strength Cond Res 2014; 28: 1096-1105 DOI: 10.1519/JSC.0b013e3182a1db03.
- 31 Liao K-F, Wang X-X, Han M-Y. et al. Effects of velocity based training vs. traditional 1RM percentage-based training on improving strength, jump, linear sprint and change of direction speed performance: A systematic review with meta-analysis. PLoS One 2021; 16: e0259790 DOI: 10.1371/journal.pone.0259790.
- 32 Maffiuletti NA, Aagaard P, Blazevich AJ. et al. Rate of force development: Physiological and methodological considerations. Eur J Appl Physiol 2016; 116: 1091-1116 DOI: 10.1007/s00421-016-3346-6.
- 33 Maher CG, Sherrington C, Herbert RD. et al. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 2003; 83: 713-721
- 34 Martinez-Canton M, Gallego-Selles A, Gelabert-Rebato M. et al. Role of CaMKII and sarcolipin in muscle adaptations to strength training with different levels of fatigue in the set. Scand J Med Sci Sports 2021; 31: 91-103 DOI: 10.1111/sms.13828.
- 35 Mbuagbaw L, Rochwerg B, Jaeschke R. et al. Approaches to interpreting and choosing the best treatments in network meta-analyses. Syst Rev 2017; 6: 79 DOI: 10.1186/s13643-017-0473-z.
- 36 McLellan CP, Lovell DI, Gass GC. The role of rate of force development on vertical jump performance. J Strength Cond Res 2011; 25: 379-385 DOI: 10.1519/JSC.0b013e3181be305c.
- 37 Montalvo-Pérez A, Alejo LB, Valenzuela PL. et al. Traditional versus velocity-based resistance training in competitive female cyclists: A randomized controlled trial. Front Physiol 2021; 12: 586113 DOI: 10.3389/fphys.2021.586113.
- 38 Orange ST, Hritz A, Pearson L. et al. Comparison of the effects of velocity-based vs. traditional resistance training methods on adaptations in strength, power, and sprint speed: A systematic review, meta-analysis, and quality of evidence appraisal. J Sports Sci 2022; 0: 1-15 DOI: 10.1080/02640414.2022.2059320.
- 39 Padulo J, Mignogna P, Mignardi S. et al. Effect of different pushing speeds on bench press. Int J Sports Med 2012; 33: 376-380 DOI: 10.1055/s-0031-1299702.
- 40 Pareja-Blanco F, Alcazar J, Sánchez-Valdepeñas J. et al. Velocity loss as a critical variable determining the adaptations to strength training. Med Sci Sports Exerc 2020; 52: 1752-1762 DOI: 10.1249/MSS.0000000000002295.
- 41 Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L. et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports 2017; 27: 724-735 DOI: 10.1111/sms.12678.
- 42 Pareja-Blanco F, Sánchez-Medina L, Suárez-Arrones L. et al. Effects of velocity loss during resistance training on performance in professional soccer players. Int J Sports Physiol Perform 2017; 12: 512-519 DOI: 10.1123/ijspp.2016-0170.
- 43 Pareja-Blanco F, Villalba-Fernández A, Cornejo-Daza P. et al. Time of recovery following resistance exercise with different loading magnitudes and velocity loss in the set. Sports 2019; 7: 59 DOI: 10.3390/sports7030059.
- 44 Pérez-Castilla A, García-Ramos A, Padial P. et al. Effect of different velocity loss thresholds during a power-oriented resistance training program on the mechanical capacities of lower-body muscles. J Sports Sci 2018; 36: 1331-1339 DOI: 10.1080/02640414.2017.1376900.
- 45 Rodríguez-Rosell D, Yáñez-García JM, Mora-Custodio R. et al. Effect of velocity loss during squat training on neuromuscular performance. Scand J Med Sci Sports 2021; 31: 1621-1635 DOI: 10.1111/sms.13967.
- 46 Rodríguez-Rosell D, Yáñez-García JM, Sánchez-Medina L. et al. Relationship between velocity loss and repetitions in reserve in the bench press and back squat exercises. J Strength Cond Res 2020; 34: 2537-2547 DOI: 10.1519/JSC.0000000000002881.
- 47 Rücker G, Krahn U, König J. et al. netmeta: Network meta-analysis using frequentist methods. 2021
- 48 Rücker G, Schwarzer G. Ranking treatments in frequentist network meta-analysis works without resampling methods. BMC Med Res Methodol 2015; 15: 58 DOI: 10.1186/s12874-015-0060-8.
- 49 Sánchez-Medina L, González-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc 2011; 43: 1725-1734 DOI: 10.1249/MSS.0b013e318213f880.
- 50 Senn S. Trying to be precise about vagueness. Stat Med 2007; 26: 1417-1430 DOI: 10.1002/sim.2639.
- 51 Shattock K, Tee JC. Autoregulation in resistance training: A comparison of subjective versus objective methods. 2020: 8
- 52 Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med 2016; 46: 1419-1449 DOI: 10.1007/s40279-016-0486-0.
- 53 Weakley J, Mann B, Banyard H. et al. Velocity-based training: From theory to application. Strength & Conditioning Journal 2021; 43: 31-49 DOI: 10.1519/SSC.0000000000000560.
- 54 Włodarczyk M, Adamus P, Zieliński J. et al. Effects of velocity-based training on strength and power in elite athletes – a systematic review. Int J Environ Res Public Health 2021; 18: 5257 DOI: 10.3390/ijerph18105257.
- 55 Zourdos MC, Klemp A, Dolan C. et al. Novel resistance training-specific rating of perceived exertion scale measuring repetitions in reserve. J Strength Cond Res 2016; 30: 267-275 DOI: 10.1519/JSC.0000000000001049.