Subscribe to RSS
DOI: 10.1055/a-2103-9629
Synthesis of Furo- and Thienoquinolines by Using an Amine Oxidase-Inspired Catalyst
The authors thank SERB (CRG/2019/001232) and Indian Institute of Science Education and Research Kolkata (ARF) for financial support. P.R.T. thanks University Grants Commission for a fellowship.
Dedicated to Professor Dr. Hisashi Yamamoto on the occasion of his 80th birthday
Abstract
We report the regioselective synthesis of furo- and thienoquinolines by using an amine oxidase-inspired catalyst (1,10-phenanthroline-5,6-dione) and an abundant Lewis acid (FeCl3) as a co-catalyst. The aerobic amine dehydrogenation proceeds under mild conditions and produces the quinolines in high yields. Mechanistic studies helped to identify the possible reaction intermediates and the specific role of the catalyst in the multistep cascade.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2103-9629.
- Supporting Information
Publication History
Received: 30 April 2023
Accepted after revision: 31 May 2023
Accepted Manuscript online:
31 May 2023
Article published online:
19 July 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Anzini M, Cappelli A, Vomero S, Giorgi G, Langer T, Hamon M, Merahi N, Emerit BM, Cagnotto A, Skorupska M, Mennini T, Pinto JC. J. Med. Chem. 1995; 38: 2692
- 1b Cruickshank PA, Lee FT, Lupichuk A. J. Med. Chem. 1970; 13: 1110
- 2a Afzal O, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M, Bawa S. Eur. J. Med. Chem. 2015; 97: 871
- 2b Kokatla HP, Sil D, Malladi SS, Balakrishna R, Hermanson AR, Fox LM, Wang X, Dixit A, David SA. J. Med. Chem. 2013; 56: 6871
- 2c Rechfeld F, Gruber P, Kirchmair J, Boehler M, Hauser N, Hechenberger G, Garczarczyk D, Lapa GB, Preobrazhenskaya MN, Goekjian P, Langer T, Hofmann J. J. Med. Chem. 2014; 57: 3235
- 2d Volpi G. Asian J. Org. Chem 2022; 11: e202200171
- 3 Movassaghi M, Hill MD. J. Am. Chem. Soc. 2006; 128: 4592
- 4 Movassaghi M, Hill MD. Org. Lett. 2008; 10: 3485
- 5 McBurney RT, Slawin AM. Z, Smart LA, Yu Y, Walton JC. Chem. Commun. 2011; 47: 7974
- 6 Bouma MJ, Masson G, Zhu J. Eur. J. Org. Chem. 2012; 475
- 7a Akula M, Yogeeswari P, Sriram D, Jha M, Bhattacharya A. RSC Adv. 2016; 6: 46073
- 7b Bao L, Liu J, Xu L, Hu Z, Xu X. Adv. Synth. Catal. 2018; 360: 1870
- 7c Chen P, Nan J, Hu Y, Kang Y, Wang B, Ma Y, Szostak M. Chem. Sci. 2020; 12: 803
- 7d Chinthapally K, Massaro NP, Padgett HL, Sharma I. Chem. Commun. 2017; 53: 12205
- 8 Qi L.-J, Shi C.-Y, Chen P.-F, Li L, Fang G, Qian P.-C, Deng C, Zhou J.-M, Ye L.-W. ACS Catal. 2021; 11: 3679
- 9a Anthony C. Biochem. J. 1996; 320: 697
- 9b Anthony C, Ghosh M. Curr. Sci. 1997; 72: 716
- 9c Klinman JP, Bonnot F. Chem. Rev. 2014; 114: 4343
- 9d Largeron M. Org. Biomol. Chem. 2017; 15: 4722
- 9e Mure M. Acc. Chem. Res. 2004; 37: 131
- 9f Zhang R, Luo S. Chin. Chem. Lett. 2018; 29: 1193
- 9g Zhang R, Zhang R, Luo S. Prog. Chem. (Beijing, China) 2020; 32: 1753
- 10 Largeron MN, Neudorffe A, Fleury M.-B. Angew. Chem. Int. Ed. 2003; 42: 1026
- 11 Wendlandt AE, Stahl SS. Angew. Chem. Int. Ed. 2015; 54: 14638
- 12a Thorve PR, Maji B. Catal. Sci. Technol. 2021; 11: 1116
- 12b Thorve PR, Maji B. Org. Lett. 2021; 23: 542
- 13a Thorve PR, Maji K, Maji B. Org. Chem. Front. 2023; 10: 480
- 13b Wendlandt AE, Stahl SS. J. Am. Chem. Soc. 2014; 136: 506
- 13c Wendlandt AE, Stahl SS. J. Am. Chem. Soc. 2014; 136: 11910
- 14 Quinolines 3; General Procedure A 10 mL sealed tube was charged with the appropriate aniline derivative 1 (0.1 mmol), phd (0.020 mmol, 20 mol%), FeCl3 (0.010 mmol, 10 mol%), TsOH·H2O (0.010 mmol, 10 mol%), and PhNO2 (0.5 mL). Amine 2 (0.15 mmol) was added slowly, and the mixture was stirred at r.t. in the presence of O2 (balloon; 1 atm) for about 5 min. The tube was then capped and placed in a preheated oil bath at 80 °C for 36 h. When the reaction was complete, it was quenched with H2O (5 mL) and the mixture was extracted with EtOAc or CH2Cl2 (3 × 2 mL). The combined organic layer was dried (Na2SO4), filtered, and concentrated. The residue was purified by flash column chromatography [silica gel (100–200 or 200–400 mesh), EtOAc–hexane]. 4-(4-Methoxyphenyl)furo[2,3-c]quinoline (3aa) Colorless solid; yield: 22.0 mg (0.080 mmol, 80%); Rf = 0.4 (EtOAc–hexane, 2:98). 1H NMR (500 MHz, CDCl3): δ = 8.51 (d, J = 9.0 Hz, 2 H), 8.29 (d, J = 8.2 Hz, 1 H), 8.07 (d, J = 8.1 Hz, 1 H), 7.91 (d, J = 2.1 Hz, 1 H), 7.69 (t, J = 7.6 Hz, 1 H), 7.57 (t, J = 7.6 Hz, 1 H), 7.29 (d, J = 2.1 Hz, 1 H), 7.11 (d, J = 9.0 Hz, 2 H), 3.91 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 161.2, 147.4, 146.9, 144.4, 144.3, 130.8, 130.7, 129.9, 128.9, 127.7, 126.2, 123.3, 122.9, 114.2, 105.6, 55.5. HRMS (ESI+): m/z [M + H]+calcd for C18H14NO2: 276.1019; found: 276.1020. 4-(4-Methoxyphenyl)-8-methylthieno[2,3-c]quinoline (3da) Colorless solid; yield: 26.0 mg (0.085 mmol, 85%); Rf = 0.4 (EtOAc–hexane, 4:96). 1H NMR (500 MHz, CDCl3): δ = 8.17 (d, J = 8.4 Hz, 1 H), 8.11 (d, J = 8.9 Hz, 2 H), 8.01 (s, 1 H), 7.95 (d, J = 5.3 Hz, 1 H), 7.77 (d, J = 5.5 Hz, 1 H), 7.53 (d, J = 8.5 Hz, 1 H), 7.10 (d, J = 8.9 Hz, 2 H), 3.89 (s, 3 H), 2.59 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 160.8, 152.7, 143.6, 142.5, 136.3, 132.7, 132.0, 131.3, 130.2, 130.1, 129.6, 123.4, 122.5, 121.9, 114.2, 55.5, 21.9. HRMS (ESI+): m/z [M + H]+calcd for C19H16NOS: 306.0947; found: 306.0956. 4-(p-Tolyl)furo[2,3-c]quinoline (3ad) Colorless solid; yield: 20.0 mg (0.077 mmol, 77%); Rf = 0.5 (EtOAc–hexane, 5:95). 1H NMR (500 MHz, CDCl3): δ = 8.41 (d, J = 8.2 Hz, 2 H), 8.28 (d, J = 8.4 Hz, 1 H), 8.11 (d, J = 7.9 Hz, 1 H), 7.94 (d, J = 2.0 Hz, 1 H), 7.70 (t, J = 7.7 Hz, 1 H), 7.60 (t, J = 7.6 Hz, 1 H), 7.40 (d, J = 8.2 Hz, 2 H), 7.33 (d, J = 2.1 Hz, 1 H), 2.47 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 147.6, 146.9, 144.9, 144.5, 140.0, 133.7, 130.8, 130.3, 129.5, 129.1, 127.7, 126.4, 123.3, 123.2, 105.6, 21.6. HRMS (ESI+): m/z [M + H]+calcd for C18H14NO: 260.1070; found: 260.1057. 4-(2-Naphthyl)furo[2,3-c]quinoline (3al) Yellowish solid; yield: 19.0 mg (0.064 mmol, 64%); Rf = 0.5 (EtOAc–hexane, 2:98). 1H NMR (500 MHz, CDCl3): δ = 9.06 (d, J = 2.0 Hz, 1 H), 8.67 (d, J = 8.7 Hz, 1 H), 8.36 (d, J = 7.6 Hz, 1 H), 8.14 (d, J = 8.1 Hz, 1 H), 8.10–8.04 (m, 2 H), 8.00 (d, J = 2.0 Hz, 1 H), 7.97–7.91 (m, 1 H), 7.74 (t, J = 7.6 Hz, 1 H), 7.63 (t, J = 6.9 Hz, 1 H), 7.61–7.54 (m, 2 H), 7.36 (d, J = 2.1 Hz, 1 H). 13C NMR (126 MHz, CDCl3): δ = 147.7, 147.5, 144.5, 144.1, 134.3, 133.5, 133.3, 131.4, 130.0, 129.7, 129.3, 128.5, 128.1, 127.9, 127.2, 126.8, 126.5, 126.1, 123.4, 123.2, 105.8. HRMS (ESI+): m/z [M + H]+calcd for C21H14NO: 296.1070; found: 296.1065.
- 15 CCDC 224516 contains the supplementary crystallographic data for compound 3fa. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 16 Hanawa F, Fokialakis N, Skaltsounis A.-L. Planta Med. 2004; 70: 531
- 17a Liu Y, Liu M, Zhang D, Hua X, Wang B, Zhou S, Li Z. Chem. Res. Chin. Univ. 2016; 32: 952
- 17b Roman G. Arch. Pharm. (Weinheim, Ger.) 2022; 355: 2100462
- 17c Ünver Y, Sancak K, Çelik F, Birinci E, Küçük M, Soylu S, Burnaz NA. Eur. J. Med. Chem. 2014; 84: 639
- 18 Jun JV, Chenoweth DM, Petersson EJ. Org. Biomol. Chem. 2020; 18: 5747