Synthesis 2023; 55(23): 3895-3905 DOI: 10.1055/a-2119-5390
Recent Advances in the Asymmetric Doyle–Kirmse Reaction
Chong-Yang Shi
a
College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, P. R. of China
,
Bo Zhou
b
Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
,
Ming-Yu Teng∗
a
College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, P. R. of China
,
Long-Wu Ye∗
a
College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, P. R. of China
b
Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
c
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
› Institutsangaben We are grateful for financial support from the National Natural Science Foundation of China (22125108), Yunnan Normal University, and the Applied Basic Research Foundation of Yunnan Province (202101AT070217).
Abstract
The asymmetric Doyle–Kirmse reaction has become increasingly important in the construction of chiral sulfides, especially for those with quaternary carbon stereocenters. Over the few past decades, a series of catalytic asymmetric approaches have been developed promoted by copper, rhodium, nickel, and other chiral catalysts. Apart from the frequently investigated sulfonium ylides, the enantioselective [2,3]-sigmatropic rearrangement of selenium ylides and iodonium ylides has also been discovered recently. This review summarizes recent advances in the asymmetric Doyle–Kirmse reaction according to the patterns of chirality induction. The synthetic methods for rearranged products, reaction mechanisms and applications are discussed in this review.
1 Introduction
2 Asymmetric Doyle–Kirmse Reaction Controlled by Chiral Free Ylides
3 Asymmetric Doyle–Kirmse Reaction Controlled by Chiral Metal-Bound Ylides
4 Conclusion and Outlook
Key words
Doyle–Kirmse reaction -
chiral free ylides -
chiral metal-bound ylides -
asymmetric catalysis
Publikationsverlauf
Eingereicht: 31. Mai 2023
Angenommen nach Revision: 28. Juni 2023
Accepted Manuscript online: 28. Juni 2023
Artikel online veröffentlicht: 10. August 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Ford A,
Miel H,
Ring A,
Slattery CN,
Maguire AR,
McKervey MA.
Chem. Rev. 2015; 115: 9981
1b
West TH,
Spoehrle SS. M,
Kasten K,
Taylor JE,
Smith AD.
ACS Catal. 2015; 5: 7446
1c
Sheng Z,
Zhang Z,
Chu C,
Zhang Y,
Wang J.
Tetrahedron 2017; 73: 4011
1d
Dequina HJ,
Nicastri KA,
Schomaker JM.
Adv. Organomet. Chem. 2021; 76: 1
2
Krimse W,
Kapps M.
Chem. Ber. 1968; 101: 994
3
Doyle MP,
Griffin JH,
Chinn MS,
Leusen DV.
J. Org. Chem. 1984; 49: 1917
4a
Padwa A,
Weingarten MD.
Chem. Rev. 1996; 96: 223
4b
Kaiser D,
Klose I,
Oost R,
Neuhaus J,
Maulide N.
Chem. Rev. 2019; 119: 8701
4c
Chen H,
Jiang W,
Zeng Q.
Chem. Rec. 2020; 20: 1269
For selected reviews, see:
5a
Zhang Y,
Wang J.
Coord. Chem. Rev. 2010; 254: 941
5b
Oost R,
Neuhaus JD,
Merad J,
Maulide N.
Sulfur Ylides in Organic Synthesis and Transition Metal Catalysis. In Modern Ylide Chemistry. Structure and Bonding.
Gessner VH.
Springer; Berlin: 2017
For recent selected examples based on diazo compounds, see:
5c
Wu L,
Li Z,
Lu P,
Wang Y.
J. Org. Chem. 2018; 83: 13956
5d
Jana S,
Koenigs RM.
Asian J. Org. Chem. 2019; 8: 683
5e
Yan S,
Rao J,
Zhou C.-Y.
Org. Lett. 2020; 22: 9091
5f
He F,
Jana S,
Koenigs RM.
J. Org. Chem. 2020; 85: 11882
5g
Lu X,
Yang K,
Xu X,
Sun S,
Feng S,
Bashir MA,
Liang F,
Lin J,
Huang G.
Org. Biomol. Chem. 2022; 20: 9228
6
Hock KJ,
Mertens L,
Hommelsheim R,
Spitzner R,
Koenigs RM.
Chem. Commun. 2017; 53: 6577
7a
Davies PW.
Pure Appl. Chem. 2010; 82: 1537
7b
Davies PW,
Albrecht SJ.-C.
Synlett 2012; 23: 70
7c
Li J,
Ji K,
Zheng R,
Nelson J,
Zhang L.
Chem. Commun. 2014; 50: 4130
7d
Santos MD,
Davies PW.
Chem. Commun. 2014; 50: 6001
7e
Priest JD,
Male L,
Davies PW.
Tetrahedron 2021; 78: 131757
8a
Yadagiri D,
Anbarasan P.
Chem. Eur. J. 2013; 19: 15115
8b
Miura T,
Tanaka T,
Yada A,
Murakami M.
Chem. Lett. 2013; 42: 1308
8c
Wang J,
Yu J,
Chen J,
Jiang Y,
Xiao T.
Org. Biomol. Chem. 2021; 19: 6974
For selected examples see:
9a
Carter DS,
Vranken DL. V.
Org. Lett. 2000; 2: 1303
9b
Davies PW,
Albrecht SJ.-C.
Angew. Chem. Int. Ed. 2009; 48: 8372
9c
Davies PW,
Albrecht SJ.-C,
Assanelli G.
Org. Biomol. Chem. 2009; 7: 1276
9d
Holzwarth MS,
Alt I,
Plietker B.
Angew. Chem. Int. Ed. 2012; 51: 5351
9e
Xu X,
Li C,
Tao Z,
Pan Y.
Green Chem. 2017; 19: 1245
10a
Wu H,
Wang Q,
Zhu J.
Eur. J. Org. Chem. 2019; 1964
10b
Jana S,
Guo Y,
Koenigs RM.
Chem. Eur. J. 2021; 27: 1270
10c
Dong S,
Liu X,
Feng X.
Acc. Chem. Res. 2022; 55: 415
10d
Liu Y,
Liu X,
Feng X.
Chem. Sci. 2022; 13: 12290
11
Trost BM,
Hammen RF.
J. Am. Chem. Soc. 1973; 95: 962
12
Nishibayashi Y,
Ohe K,
Uemura S.
J. Chem. Soc., Chem. Commun. 1995; 1425
13a
Fukuda T,
Katsuki T.
Tetrahedron Lett. 1997; 38: 3435
13b
Fukuda T,
Irie R,
Katsuki T.
Tetrahedron 1999; 55: 649
13c
Kitagaki S,
Yanamoto Y,
Okubo H,
Nakajima M,
Hashimoto S.
Heterocycles 2001; 54: 623
14a
McMillen DW,
Varga N,
Reed BA,
King C.
J. Org. Chem. 2000; 65: 2532
14b
Zhang X,
Qu Z,
Ma Z,
Shi W,
Jin X,
Wang J.
J. Org. Chem. 2002; 67: 5621
14c
Zhang X,
Ma M,
Wang J.
Tetrahedron: Asymmetry 2003; 14: 891
15
Ma M,
Peng L,
Li C,
Zhang X,
Wang J.
J. Am. Chem. Soc. 2005; 127: 15016
16
Sheng Z,
Ma M,
Peng L,
Zhang Z,
Chu C,
Zhang Y,
Wang J.
Chin. J. Org. Chem. 2017; 37: 1730
17
Zhang Z.-K,
Sheng Z,
Yu W.-Z,
Wu G.-J,
Zhang R,
Chu W.-D,
Zhang Y,
Wang J.
Nat. Chem. 2017; 9: 970
18a
Hock KJ,
Koenigs RM.
Angew. Chem. Int. Ed. 2017; 56: 13566
18b
Liu Z,
Jin X,
Dang Y.
ACS Catal. 2021; 11: 691
18c
Laconsay CJ,
Tantillo DJ.
ACS Catal. 2021; 11: 829
For selected reviews on allenes, see:
19a
Ye J,
Ma S.
Acc. Chem. Res. 2014; 47: 989
19b
Soriano E,
Fernández I.
Chem. Soc. Rev. 2014; 43: 3041
19c
Liu Y,
Bandini M.
Chin. J. Chem. 2019; 37: 431
20
Zhang X,
Ma M,
Wang J.
Chin. J. Chem. 2003; 21: 878
21
Wang K,
Li S,
Wang J.
Chem. Eur. J. 2022; 28: e202200170
22
Zhang H,
Wang B,
Yi H,
Zhang Y,
Wang J.
Org. Lett. 2015; 17: 3322
For selected reviews, see:
23a
Zheng Z,
Wang Z,
Wang Y,
Zhang L.
Chem. Soc. Rev. 2016; 45: 4448
23b
Sahani RL,
Ye L.-W,
Liu R.-S.
Adv. Organomet. Chem. 2020; 73: 195
23c
Ye L.-W,
Zhu X.-Q,
Sahani RL,
Xu Y,
Qian P.-C,
Liu R.-S.
Chem. Rev. 2021; 121: 9039
23d
Zheng Z,
Ma X,
Cheng X,
Zhao K,
Gutman K,
Li T,
Zhang L.
Chem. Rev. 2021; 121: 8979
23e
Davies PW,
Garzón M.
Asian J. Org. Chem. 2015; 4: 694
23f
Song X.-R,
Qiu Y.-F,
Liu X.-Y,
Liang Y.-M.
Org. Biomol. Chem. 2016; 14: 11317
23g
Aguilar E,
Santamaría J.
Org. Chem. Front. 2019; 6: 1513
For selected examples, see:
24a
Shu C,
Wang Y.-H,
Zhou B,
Li X.-L,
Ping Y.-F,
Lu X,
Ye L.-W.
J. Am. Chem. Soc. 2015; 137: 9567
24b
Pan Y,
Chen G.-W,
Shen C.-H,
He W,
Ye L.-W.
Org. Chem. Front. 2016; 3: 491
24c
Shu C,
Shen C.-H,
Wang Y.-H,
Li L,
Li T,
Lu X,
Ye L.-W.
Org. Lett. 2016; 18: 4630
24d
Zhou B,
Zhang Y.-Q,
Liu X,
Ye L.-W.
Sci. Bull. 2017; 62: 1201
24e
Shen W.-B,
Sun Q,
Li L,
Liu X,
Zhou B,
Yan J.-Z,
Lu X,
Ye L.-W.
Nat. Commun. 2017; 8: 1748
24f
Liu X,
Wang Z.-S,
Zhai T.-Y,
Luo C,
Zhang Y.-P,
Chen Y.-B,
Deng C,
Liu R.-S,
Ye L.-W.
Angew. Chem. Int. Ed. 2020; 59: 17984
24g
Weng C.-Y,
Zhu G.-Y,
Zhu B.-H,
Qian P.-C,
Zhu X.-Q,
Zhou J.-M,
Ye L.-W.
Org. Chem. Front. 2022; 9: 2773
24h
Liu X,
Liu L.-G,
Chen C.-M,
Li X,
Xu Z,
Lu X,
Zhou B,
Ye L.-W.
Angew. Chem. Int. Ed. 2023; 62: e202216923
For recent reviews on ynamide chemistry, see:
25a
Hu Y.-C,
Zhao Y,
Wan B,
Chen Q.-A.
Chem. Soc. Rev. 2021; 50: 2582
25b
Lynch CC,
Sripada A,
Wolf C.
Chem. Soc. Rev. 2020; 49: 8543
25c
Chen Y.-B,
Qian P.-C,
Ye L.-W.
Chem. Soc. Rev. 2020; 49: 8897
25d
Hong F.-L,
Ye L.-W.
Acc. Chem. Res. 2020; 53: 2003
25e
Luo J,
Chen G.-S,
Chen S.-J,
Yu J.-S,
Li Z.-D,
Liu Y.-L.
ACS Catal. 2020; 10: 13978
25f
Zhou B,
Tan T.-D,
Zhu X.-Q,
Shang M,
Ye L.-W.
ACS Catal. 2019; 9: 6393
25g
Evano G,
Theunissen C,
Lecomte M.
Aldrichimica Acta 2015; 48: 59
25h
Wang X.-N,
Yeom H.-S,
Fang L.-C,
He S,
Ma Z.-X,
Kedrowski BL,
Hsung RP.
Acc. Chem. Res. 2014; 47: 560
26
Aggarwal VK,
Ferrara M,
Hainz R,
Spey SE.
Tetrahedron Lett. 1999; 40: 8923
27
Lin X,
Tang Y,
Yang W,
Tan F,
Lin L,
Liu X,
Feng X.
J. Am. Chem. Soc. 2018; 140: 3299
For selected examples, see:
28a
Prier CK,
Hyster TK,
Farwell CC,
Huang A,
Arnold FH.
Angew. Chem. Int. Ed. 2016; 55: 4711
28b
Weissenborn MJ,
Koenigs RM.
ChemCatChem 2020; 12: 2171
28c
Miller DC,
Lal RG,
Marchetti LA,
Arnold FH.
J. Am. Chem. Soc. 2022; 144: 4739
29
Tyagi V,
Sreenilayam G,
Bajaj P,
Tinoco A,
Fasan R.
Angew. Chem. Int. Ed. 2016; 55: 13562
30
Kamigata N,
Nakamura Y,
Kikuchi K,
Ikemoto I,
Shimizu T,
Matsuyama H.
J. Chem. Soc., Perkin Trans. 1 1992; 1721
31
Lin X,
Tan Z,
Yang W,
Yang W,
Liu X,
Feng X.
CCS Chem. 2020; 2: 1423
32a
Yang W,
Pu M,
Lin X,
Chen M,
Song Y,
Liu X,
Wu Y.-D,
Feng X.
J. Am. Chem. Soc. 2021; 143: 9648
32b
Lin X,
Pu M,
Sang X,
Li S,
Liu X,
Wu Y.-D,
Feng X.
Angew. Chem. Int. Ed. 2022; 61: e202201151
32c
Dong S,
Liu X,
Feng X.
Acc. Chem. Res. 2022; 55: 415
33
Doyle MP,
Forbes DC,
Vasbinder MM,
Peterson CS.
J. Am. Chem. Soc. 1998; 120: 7653
34
Xu B,
Tambar UK.
J. Am. Chem. Soc. 2016; 138: 12073
35
Xu B,
Tambar UK.
Angew. Chem. Int. Ed. 2017; 56: 9868