Synthesis 2023; 55(23): 3895-3905
DOI: 10.1055/a-2119-5390
short review

Recent Advances in the Asymmetric Doyle–Kirmse Reaction

Chong-Yang Shi
a   College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, P. R. of China
,
Bo Zhou
b   Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
,
Ming-Yu Teng
a   College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, P. R. of China
,
Long-Wu Ye
a   College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, P. R. of China
b   Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
c   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
› Author Affiliations
We are grateful for financial support from the National Natural Science Foundation of China (22125108), Yunnan Normal University, and the Applied Basic Research Foundation of Yunnan Province (202101AT070217).


Abstract

The asymmetric Doyle–Kirmse reaction has become increasingly important in the construction of chiral sulfides, especially for those with quaternary carbon stereocenters. Over the few past decades, a series of catalytic asymmetric approaches have been developed promoted by copper, rhodium, nickel, and other chiral catalysts. Apart from the frequently investigated sulfonium ylides, the enantioselective [2,3]-sigmatropic rearrangement of selenium ylides and iodonium ylides has also been discovered recently. This review summarizes recent advances in the asymmetric Doyle–Kirmse reaction according to the patterns of chirality induction. The synthetic methods for rearranged products, reaction mechanisms and applications are discussed in this review.

1 Introduction

2 Asymmetric Doyle–Kirmse Reaction Controlled by Chiral Free Ylides

3 Asymmetric Doyle–Kirmse Reaction Controlled by Chiral Metal-Bound Ylides

4 Conclusion and Outlook



Publication History

Received: 31 May 2023

Accepted after revision: 28 June 2023

Accepted Manuscript online:
28 June 2023

Article published online:
10 August 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
    • 1b West TH, Spoehrle SS. M, Kasten K, Taylor JE, Smith AD. ACS Catal. 2015; 5: 7446
    • 1c Sheng Z, Zhang Z, Chu C, Zhang Y, Wang J. Tetrahedron 2017; 73: 4011
    • 1d Dequina HJ, Nicastri KA, Schomaker JM. Adv. Organomet. Chem. 2021; 76: 1
  • 2 Krimse W, Kapps M. Chem. Ber. 1968; 101: 994
  • 3 Doyle MP, Griffin JH, Chinn MS, Leusen DV. J. Org. Chem. 1984; 49: 1917
    • 4a Padwa A, Weingarten MD. Chem. Rev. 1996; 96: 223
    • 4b Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
    • 4c Chen H, Jiang W, Zeng Q. Chem. Rec. 2020; 20: 1269

      For selected reviews, see:
    • 5a Zhang Y, Wang J. Coord. Chem. Rev. 2010; 254: 941
    • 5b Oost R, Neuhaus JD, Merad J, Maulide N. Sulfur Ylides in Organic Synthesis and Transition Metal Catalysis. In Modern Ylide Chemistry. Structure and Bonding. Gessner VH. Springer; Berlin: 2017

    • For recent selected examples based on diazo compounds, see:
    • 5c Wu L, Li Z, Lu P, Wang Y. J. Org. Chem. 2018; 83: 13956
    • 5d Jana S, Koenigs RM. Asian J. Org. Chem. 2019; 8: 683
    • 5e Yan S, Rao J, Zhou C.-Y. Org. Lett. 2020; 22: 9091
    • 5f He F, Jana S, Koenigs RM. J. Org. Chem. 2020; 85: 11882
    • 5g Lu X, Yang K, Xu X, Sun S, Feng S, Bashir MA, Liang F, Lin J, Huang G. Org. Biomol. Chem. 2022; 20: 9228
  • 6 Hock KJ, Mertens L, Hommelsheim R, Spitzner R, Koenigs RM. Chem. Commun. 2017; 53: 6577
    • 8a Yadagiri D, Anbarasan P. Chem. Eur. J. 2013; 19: 15115
    • 8b Miura T, Tanaka T, Yada A, Murakami M. Chem. Lett. 2013; 42: 1308
    • 8c Wang J, Yu J, Chen J, Jiang Y, Xiao T. Org. Biomol. Chem. 2021; 19: 6974

      For selected examples see:
    • 9a Carter DS, Vranken DL. V. Org. Lett. 2000; 2: 1303
    • 9b Davies PW, Albrecht SJ.-C. Angew. Chem. Int. Ed. 2009; 48: 8372
    • 9c Davies PW, Albrecht SJ.-C, Assanelli G. Org. Biomol. Chem. 2009; 7: 1276
    • 9d Holzwarth MS, Alt I, Plietker B. Angew. Chem. Int. Ed. 2012; 51: 5351
    • 9e Xu X, Li C, Tao Z, Pan Y. Green Chem. 2017; 19: 1245
    • 10a Wu H, Wang Q, Zhu J. Eur. J. Org. Chem. 2019; 1964
    • 10b Jana S, Guo Y, Koenigs RM. Chem. Eur. J. 2021; 27: 1270
    • 10c Dong S, Liu X, Feng X. Acc. Chem. Res. 2022; 55: 415
    • 10d Liu Y, Liu X, Feng X. Chem. Sci. 2022; 13: 12290
  • 11 Trost BM, Hammen RF. J. Am. Chem. Soc. 1973; 95: 962
  • 12 Nishibayashi Y, Ohe K, Uemura S. J. Chem. Soc., Chem. Commun. 1995; 1425
    • 13a Fukuda T, Katsuki T. Tetrahedron Lett. 1997; 38: 3435
    • 13b Fukuda T, Irie R, Katsuki T. Tetrahedron 1999; 55: 649
    • 13c Kitagaki S, Yanamoto Y, Okubo H, Nakajima M, Hashimoto S. Heterocycles 2001; 54: 623
    • 14a McMillen DW, Varga N, Reed BA, King C. J. Org. Chem. 2000; 65: 2532
    • 14b Zhang X, Qu Z, Ma Z, Shi W, Jin X, Wang J. J. Org. Chem. 2002; 67: 5621
    • 14c Zhang X, Ma M, Wang J. Tetrahedron: Asymmetry 2003; 14: 891
  • 15 Ma M, Peng L, Li C, Zhang X, Wang J. J. Am. Chem. Soc. 2005; 127: 15016
  • 16 Sheng Z, Ma M, Peng L, Zhang Z, Chu C, Zhang Y, Wang J. Chin. J. Org. Chem. 2017; 37: 1730
  • 17 Zhang Z.-K, Sheng Z, Yu W.-Z, Wu G.-J, Zhang R, Chu W.-D, Zhang Y, Wang J. Nat. Chem. 2017; 9: 970
    • 18a Hock KJ, Koenigs RM. Angew. Chem. Int. Ed. 2017; 56: 13566
    • 18b Liu Z, Jin X, Dang Y. ACS Catal. 2021; 11: 691
    • 18c Laconsay CJ, Tantillo DJ. ACS Catal. 2021; 11: 829

      For selected reviews on allenes, see:
    • 19a Ye J, Ma S. Acc. Chem. Res. 2014; 47: 989
    • 19b Soriano E, Fernández I. Chem. Soc. Rev. 2014; 43: 3041
    • 19c Liu Y, Bandini M. Chin. J. Chem. 2019; 37: 431
  • 20 Zhang X, Ma M, Wang J. Chin. J. Chem. 2003; 21: 878
  • 21 Wang K, Li S, Wang J. Chem. Eur. J. 2022; 28: e202200170
  • 22 Zhang H, Wang B, Yi H, Zhang Y, Wang J. Org. Lett. 2015; 17: 3322

    • For selected reviews, see:
    • 23a Zheng Z, Wang Z, Wang Y, Zhang L. Chem. Soc. Rev. 2016; 45: 4448
    • 23b Sahani RL, Ye L.-W, Liu R.-S. Adv. Organomet. Chem. 2020; 73: 195
    • 23c Ye L.-W, Zhu X.-Q, Sahani RL, Xu Y, Qian P.-C, Liu R.-S. Chem. Rev. 2021; 121: 9039
    • 23d Zheng Z, Ma X, Cheng X, Zhao K, Gutman K, Li T, Zhang L. Chem. Rev. 2021; 121: 8979
    • 23e Davies PW, Garzón M. Asian J. Org. Chem. 2015; 4: 694
    • 23f Song X.-R, Qiu Y.-F, Liu X.-Y, Liang Y.-M. Org. Biomol. Chem. 2016; 14: 11317
    • 23g Aguilar E, Santamaría J. Org. Chem. Front. 2019; 6: 1513

      For selected examples, see:
    • 24a Shu C, Wang Y.-H, Zhou B, Li X.-L, Ping Y.-F, Lu X, Ye L.-W. J. Am. Chem. Soc. 2015; 137: 9567
    • 24b Pan Y, Chen G.-W, Shen C.-H, He W, Ye L.-W. Org. Chem. Front. 2016; 3: 491
    • 24c Shu C, Shen C.-H, Wang Y.-H, Li L, Li T, Lu X, Ye L.-W. Org. Lett. 2016; 18: 4630
    • 24d Zhou B, Zhang Y.-Q, Liu X, Ye L.-W. Sci. Bull. 2017; 62: 1201
    • 24e Shen W.-B, Sun Q, Li L, Liu X, Zhou B, Yan J.-Z, Lu X, Ye L.-W. Nat. Commun. 2017; 8: 1748
    • 24f Liu X, Wang Z.-S, Zhai T.-Y, Luo C, Zhang Y.-P, Chen Y.-B, Deng C, Liu R.-S, Ye L.-W. Angew. Chem. Int. Ed. 2020; 59: 17984
    • 24g Weng C.-Y, Zhu G.-Y, Zhu B.-H, Qian P.-C, Zhu X.-Q, Zhou J.-M, Ye L.-W. Org. Chem. Front. 2022; 9: 2773
    • 24h Liu X, Liu L.-G, Chen C.-M, Li X, Xu Z, Lu X, Zhou B, Ye L.-W. Angew. Chem. Int. Ed. 2023; 62: e202216923

      For recent reviews on ynamide chemistry, see:
    • 25a Hu Y.-C, Zhao Y, Wan B, Chen Q.-A. Chem. Soc. Rev. 2021; 50: 2582
    • 25b Lynch CC, Sripada A, Wolf C. Chem. Soc. Rev. 2020; 49: 8543
    • 25c Chen Y.-B, Qian P.-C, Ye L.-W. Chem. Soc. Rev. 2020; 49: 8897
    • 25d Hong F.-L, Ye L.-W. Acc. Chem. Res. 2020; 53: 2003
    • 25e Luo J, Chen G.-S, Chen S.-J, Yu J.-S, Li Z.-D, Liu Y.-L. ACS Catal. 2020; 10: 13978
    • 25f Zhou B, Tan T.-D, Zhu X.-Q, Shang M, Ye L.-W. ACS Catal. 2019; 9: 6393
    • 25g Evano G, Theunissen C, Lecomte M. Aldrichimica Acta 2015; 48: 59
    • 25h Wang X.-N, Yeom H.-S, Fang L.-C, He S, Ma Z.-X, Kedrowski BL, Hsung RP. Acc. Chem. Res. 2014; 47: 560
  • 26 Aggarwal VK, Ferrara M, Hainz R, Spey SE. Tetrahedron Lett. 1999; 40: 8923
  • 27 Lin X, Tang Y, Yang W, Tan F, Lin L, Liu X, Feng X. J. Am. Chem. Soc. 2018; 140: 3299

    • For selected examples, see:
    • 28a Prier CK, Hyster TK, Farwell CC, Huang A, Arnold FH. Angew. Chem. Int. Ed. 2016; 55: 4711
    • 28b Weissenborn MJ, Koenigs RM. ChemCatChem 2020; 12: 2171
    • 28c Miller DC, Lal RG, Marchetti LA, Arnold FH. J. Am. Chem. Soc. 2022; 144: 4739
  • 29 Tyagi V, Sreenilayam G, Bajaj P, Tinoco A, Fasan R. Angew. Chem. Int. Ed. 2016; 55: 13562
  • 30 Kamigata N, Nakamura Y, Kikuchi K, Ikemoto I, Shimizu T, Matsuyama H. J. Chem. Soc., Perkin Trans. 1 1992; 1721
  • 31 Lin X, Tan Z, Yang W, Yang W, Liu X, Feng X. CCS Chem. 2020; 2: 1423
    • 32a Yang W, Pu M, Lin X, Chen M, Song Y, Liu X, Wu Y.-D, Feng X. J. Am. Chem. Soc. 2021; 143: 9648
    • 32b Lin X, Pu M, Sang X, Li S, Liu X, Wu Y.-D, Feng X. Angew. Chem. Int. Ed. 2022; 61: e202201151
    • 32c Dong S, Liu X, Feng X. Acc. Chem. Res. 2022; 55: 415
  • 33 Doyle MP, Forbes DC, Vasbinder MM, Peterson CS. J. Am. Chem. Soc. 1998; 120: 7653
  • 34 Xu B, Tambar UK. J. Am. Chem. Soc. 2016; 138: 12073
  • 35 Xu B, Tambar UK. Angew. Chem. Int. Ed. 2017; 56: 9868