Subscribe to RSS
DOI: 10.1055/a-2138-6466
Empfehlung für Leukozytapheresen zur CAR-T-Zell-Herstellung
Guide for Leukocytapheresis for CAR-T Cell Production
Zusammenfassung
Autologe chimäre Antigenrezeptor-modifizierte (CAR-) T-Zellen bieten erhebliche Vorteile für Patienten mit ansonsten refraktären malignen Erkrankungen. Die derzeit zugelassenen CAR-T-Zell-Produkte werden zur Behandlung von malignen B-Zell-Erkrankungen wie akuter B-zelliger lymphatischer Leukämie (B-ALL), B-Zell-Non-Hodgkin-Lymphom und Multiplem Myelom eingesetzt. Da sich die klinischen Anwendungsmöglichkeiten für CAR-T-Zellen kontinuierlich ausweiten, müssen Behandlungszentren, die sich noch nicht mit dem therapeutischen Einsatz von Immuneffektorzellen befasst haben, die erforderlichen Kapazitäten und Fachkenntnisse aufbauen.
Die Apherese ist ein extrakorporales Verfahren, mit dem das Ausgangsmaterial für die Herstellung von CAR-T-Zellen gewonnen wird. Dieser Leitfaden enthält Überlegungen zur Feststellung der Aphereseeignung des Patienten und gibt hilfreiche Hinweise zur Durchführung des Aphereseverfahrens, um die Gewinnung der Leukozyten zur weiteren Herstellung von CAR-T-Zellen zu optimieren. Er ist jedoch kein Ersatz für die umfassende Ausbildung, die erforderlich ist, um qualitativ hochwertige Apheresen in Übereinstimmung mit nationalen und internationalen Vorschriften durchzuführen, und er ersetzt auch nicht die Notwendigkeit, die zelluläre Zusammensetzung und die biologische Sicherheit zu bewerten.
Abstract
Autologous chimeric antigen receptor-modified (CAR-) T-cells offer significant benefits for patients with otherwise refractory malignancies. The currently approved CAR-T cell products are used for the treatment of B-cell malignancies as acute B-cell lymphoblastic leukemia (B-ALL), B-cell non-Hodgkin’s lymphoma and multiple myeloma. As the clinical applications for CAR-T cells expand, hospitals that have not yet engaged in immune effector cell therapy will need to develop the necessary capacity and expertise.
Apheresis is the process that generates the starting material for CAR-T cell manufacturing. This guide provides considerations for determining the patients readiness for apheresis gives helpful hints on performing the apheresis procedure to optimize the collection of starting materials for futher processing. However, it is not a substitute for the comprehensive training required to perform high-quality apheresis collections in compliance with national and international regulations, nor does it replace the need to assess cellular composition and biological safety.
Schlüsselwörter
Chimäre Antigenrezeptor T-Zellen - unstimulierte Leukapherese - Auswaschzeiten von MedikamentenPublication History
Article published online:
21 August 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Chabannon C, Bonini C. Structure of and Signalling Through Chimeric Antigen Receptor’. In: Kroger N, Gribben J, Chabannon C, Yakoub-Agha I, Einsele H, Hrsg. The EBMT/EHA CAR-T Cell Handbook. Cham: Springer; 2022: 3-5
- 2 Cappell KM, Kochenderfer JN. A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains. Nat Rev Clin Oncol 2021; 18: 715-727
- 3 Larson RC, Maus MV. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer 2021; 21: 145-161
- 4 Leick MB, Maus MV, Frigault MJ. Clinical Perspective: Treatment of Aggressive B Cell Lymphomas with FDA-Approved CAR-T Cell Therapies. Molecular Therapy 2021; 29: 433-441
- 5 Mikkilineni L, Kochenderfer JN. CAR T cell therapies for patients with multiple myeloma. Nat Rev Clin Oncol 2021; 18: 71-84
- 6 Frigault MJ, Maus MV. State of the art in CAR T cell therapy for CD19+ B cell malignancies. Journal of Clinical Investigation 2020; 130: 1586-1594
- 7 DiNofia AM, Maude SL. Chimeric Antigen Receptor T-Cell Therapy Clinical Results in Pediatric and Young Adult B-ALL. Hemasphere 2019; 3: e279
- 8 Bader P, Rossig C, Hutter M. et al. CD19 CAR T cells are an effective therapy for posttransplant relapse in patients with B-lineage ALL: real-world data from Germany. Blood Adv 2023; 7: 2436-2448
- 9 Martin T, Usmani SZ, Berdeja JG. et al. Ciltacabtagene Autoleucel, an Anti–B-cell Maturation Antigen Chimeric Antigen Receptor T-Cell Therapy, for Relapsed/Refractory Multiple Myeloma: CARTITUDE-1 2-Year Follow-Up. Journal of Clinical Oncology 2023; 41: 1265-1274
- 10 Dima D, Rashid A, Davis JA. et al. Efficacy and safety of idecabtagene vicleucel in patients with relapsed–refractory multiple myeloma not meeting the <scp>KarMMa</scp>-1 trial eligibility criteria: A real-world multicentre study. Br J Haematol 2024; 204: 1293-1299
- 11 Müller F, Taubmann J, Bucci L. et al. CD19 CAR T-Cell Therapy in Autoimmune Disease — A Case Series with Follow-up. New England Journal of Medicine 2024; 390: 687-700
- 12 Michaelides S, Stock S, Kobold S. CAR-T-Zellen zur Behandlung solider Tumoren. Transfusionsmedizin 2023; 13: 145-159
- 13 Passweg JR, Baldomero H, Ciceri F. et al. Hematopoietic cell transplantation and cellular therapies in Europe 2022. CAR-T activity continues to grow; transplant activity has slowed: a report from the EBMT. Bone Marrow Transplant 2024; 59: 803-812
- 14 Das RK, Vernau L, Grupp SA. et al. Naïve T-cell Deficits at Diagnosis and after Chemotherapy Impair Cell Therapy Potential in Pediatric Cancers. Cancer Discov 2019; 9: 492-499
- 15 Myers RM, Shah NN, Pulsipher MA. How I use risk factors for success or failure of CD19 CAR T cells to guide management of children and AYA with B-cell ALL. Blood 2023; 141: 1251-1264
- 16 Iacoboni G, Rejeski K, Villacampa G. et al. Real-world evidence of brexucabtagene autoleucel for the treatment of relapsed or refractory mantle cell lymphoma. Blood Adv 2022; 6: 3606-3610
- 17 Pasquini MC, Hu ZH, Curran K. et al. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv 2020; 4: 5414-5424
- 18 Ma Y, Lei H, Tan J. et al. Characterization of γδ regulatory T cells from peripheral blood in patients with multiple myeloma. Biochem Biophys Res Commun 2016; 480: 594-601
- 19 Bergmann L, Mitrou PS, Weber KC. et al. Imbalances of T-cell subsets in monoclonal gammopathies. Cancer Immunology Immunotherapy 1984; 17: 112-116
- 20 Zelle-Rieser C, Thangavadivel S, Biedermann R. et al. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. J Hematol Oncol 2016; 9: 116
- 21 Worel N, Grabmeier-Pfistershammer K, Kratzer B. et al. The frequency of differentiated CD3+CD27-CD28- T cells predicts response to CART cell therapy in diffuse large B-cell lymphoma. Front Immunol 2023; 13
- 22 Gafter-Gvili A, Polliack A. Bendamustine associated immune suppression and infections during therapy of hematological malignancies. Leuk Lymphoma 2016; 57: 512-519
- 23 Hiddemann W, Barbui AM, Canales MA. et al. Immunochemotherapy With Obinutuzumab or Rituximab for Previously Untreated Follicular Lymphoma in the GALLIUM Study: Influence of Chemotherapy on Efficacy and Safety. Journal of Clinical Oncology 2018; 36: 2395-2404
- 24 Danylesko I, Chowers G, Shouval R. et al. Treatment with anti CD19 chimeric antigen receptor T cells after antibody-based immunotherapy in adults with acute lymphoblastic leukemia. Curr Res Transl Med 2020; 68: 17-22
- 25 Pillai V, Muralidharan K, Meng W. et al. CAR T-cell therapy is effective for CD19-dim B-lymphoblastic leukemia but is impacted by prior blinatumomab therapy. Blood Adv 2019; 3: 3539-3549
- 26 Gautama B, Irwin S. Medication Restrictions for Patients Having CAR-T Therapy (Sep. 2023). Im Internet: https://www.sps.nhs.uk/articles/medication-restrictions-for-patients-having-car-t-cell-therapy/ Stand: 26.05.2024
- 27 Yokohama A, Yokote K, Maruhashi T. Apheresis on aged patients/donors with complicated backgrounds like ischemic heart disease, arrhythmia, and others. Transfusion and Apheresis Science 2018; 57: 619-622
- 28 Empringham B, Chiang KY, Krueger J. Collection of hematopoietic stem cells and immune effector cells in small children. Transfusion and Apheresis Science 2018; 57: 614-618
- 29 Hayden PJ, Roddie C, Bader P. et al. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Annals of Oncology 2022; 33: 259-275
- 30 Stenzinger M, Bonig H. Risks of leukapheresis and how to manage them-A non-systematic review. Transfusion and Apheresis Science 2018; 57: 628-634
- 31 Amini L, Silbert SK, Maude SL. et al. Preparing for CAR T cell therapy: patient selection, bridging therapies and lymphodepletion. Nat Rev Clin Oncol 2022; 19: 342-355
- 32 Acharya UH, Dhawale T, Yun S. et al. Management of cytokine release syndrome and neurotoxicity in chimeric antigen receptor (CAR) T cell therapy. Expert Rev Hematol 2019; 12: 195-205
- 33 Yáñez L, Alarcón A, Sánchez-Escamilla M. et al. How I treat adverse effects of CAR-T cell therapy. ESMO Open 2020; 4: e000746
- 34 Penack O, Koenecke C. Complications after CD19+ CAR T-Cell Therapy. Cancers (Basel) 2020; 12: 3445
- 35 Worel N, Holbro A, Vrielink H. et al. A guide to the collection of T-cells by apheresis for ATMP manufacturing-recommendations of the GoCART coalition apheresis working group. Bone Marrow Transplant 2023; 58: 742-748
- 36 Neyrinck MM, Vrielink H. Calculations in apheresis. J Clin Apher 2015; 30: 38-42
- 37 Jo T, Yoshihara S, Hada A. et al. A Clinically Applicable Prediction Model to Improve T Cell Collection in Chimeric Antigen Receptor T Cell Therapy. Transplant Cell Ther 2022; 28: 365.e1-365.e7
- 38 Allen ES, Stroncek DF, Ren J. et al. Autologous lymphapheresis for the production of chimeric antigen receptor T cells. Transfusion (Paris) 2017; 57: 1133-1141
- 39 Rajsp P, Branka M, Besson N. et al. Impact of Mobilization Strategies on Peripheral Blood Stem Cell Collection Efficiency and Product Quality: A Retrospective Single-Center Study. Cancers (Basel) 2022; 14: 6259
- 40 O’Reilly MA, Malhi A, Cheok KPL. et al. A novel predictive algorithm to personalize autologous T-cell harvest for chimeric antigen receptor T-cell manufacture. Cytotherapy 2023; 25: 323-329
- 41 O’Reilly M, Malhi A. Autologous CD3+ harvest prognostic model. Im Internet: https://cd3yield.shinyapps.io/cd3yield/ Stand: 27. Mai 2024
- 42 Jarisch A, Rettinger E, Sörensen J. et al. Unstimulated apheresis for chimeric antigen receptor manufacturing in pediatric/adolescent acute lymphoblastic leukemia patients. J Clin Apher 2020; 35: 398-405
- 43 Dzik WH, Kirkley SA. Citrate Toxicity During Massive Blood Transfusion. Transfus Med Rev 1988; 2: 76-94
- 44 Bolan CD, Cecco SA, Wesley RA. et al. Controlled study of citrate effects and response to IV calcium administration during allogeneic peripheral blood progenitor cell donation. Transfusion (Paris) 2002; 42: 935-946
- 45 Steininger PA, Strasser EF, Weiss D. et al. First comparative evaluation of a new leukapheresis technology in non-cytokine-stimulated donors. Vox Sang 2014; 106: 248-255
- 46 Accorsi P, Dell'Isola M, Bonfini T. et al. Large volume leukapheresis with AMICUS cell separator in peripheral blood stem cell autologous transplant. Transfusion and Apheresis Science 2001; 24: 79-83
- 47 Cancelas JA, Scott EP, Bill JR. Continuous CD34+ cell collection by a new device is safe and more efficient than by a standard collection procedure: results of a two-center, crossover, randomized trial. Transfusion (Paris) 2016; 56: 2824-2832
- 48 Harrer DC, Heidenreich M, Fante MA. et al. Apheresis for chimeric antigen receptor T-cell production in adult lymphoma patients. Transfusion (Paris) 2022; 62: 1602-1611
- 49 Brauninger S, Bialleck H, Thorausch K. et al. Mobilized allogeneic peripheral stem/progenitor cell apheresis with Spectra Optia v.5·0, a novel, automatic interface-controlled apheresis system: results from the first feasibility trial. Vox Sang 2011; 101: 237-246
- 50 Ali S, Chiang KY, Even-Or E. et al. Comparison between intermittent and continuous leukapheresis protocols for autologous hematopoietic stem cell collections in children. J Clin Apher 2019; 34: 646-655
- 51 European Parliament and the Council of the European union. Directive 2002/98/EC of the European Parliament and of the Council. Official Journal of the European Union. 2003 L33 F: 10
- 52 Ashford P, Allman S, Larsson S. et al. Standardization of cellular therapy terminology, coding and labeling: a review. Cytotherapy 2022; 24: 577-582
- 53 Minson A, Hamad N, Cheah CY. et al. CAR T cells and time-limited ibrutinib as treatment for relapsed/refractory mantle cell lymphoma: the phase 2 TARMAC study. Blood 2024; 143: 673-684
- 54 Berdeja JG, Madduri D, Usmani SZ. et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 2021; 398: 314-324
- 55 Ferreri CJ, Hildebrandt MAT, Hashmi H. et al. Real-world experience of patients with multiple myeloma receiving ide-cel after a prior BCMA-targeted therapy. Blood Cancer J 2023; 13: 117