Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(18): 2227-2231
DOI: 10.1055/a-2150-2912
DOI: 10.1055/a-2150-2912
cluster
Modern Boron Chemistry: 60 Years of the Matteson Reaction
Conjugate Addition of Organoboron Compounds to α,β-Unsaturated Ketones Catalyzed by Nickelacycles
This study was supported by JSPS KAKENHI Grant Number JP18K14213 and ISHIZUE 2021 of Kyoto University Research Development Program.
Abstract
The catalytic activity of nickelacycles in the conjugate addition of arylboronates to α,β-unsaturated ketones was investigated. Nickelacycles afforded β-arylated ketones in moderate to high yields, whereas an analogous palladacycle did not catalyze the reaction. Studies on the time course of the reaction confirmed that the nickelacycles act as active species in the conjugate addition reaction.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2150-2912.
- Supporting Information
Publication History
Received: 19 June 2023
Accepted after revision: 08 August 2023
Accepted Manuscript online:
08 August 2023
Article published online:
21 September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Kleiman JP, Dubeck M. J. Am. Chem. Soc. 1963; 85: 1544
- 2a Ogoshi S. Bull. Chem. Soc. Jpn. 2017; 90: 1401
- 2b Jackson EP, Malik HA, Sormunen GJ, Baxter RD, Liu P, Wang H, Shareef AR, Montgomery J. Acc. Chem. Res. 2015; 48: 1736
- 2c Standley EA, Tasker SZ, Jensen KL, Jamison TF. Acc. Chem. Res. 2015; 48: 1503
- 3 Palladacycles: Synthesis, Characterization and Applications. Dupont J, Pfeffer M. Wiley-VCH; Weinheim: 2008
- 4a Bedford RB, Betham M, Charmant JP. H, Haddow MF, Orpen AG, Pilarski LT, Coles SJ, Hursthouse MB. Organometallics 2007; 26: 6346
- 4b He P, Lu Y, Dong C.-G, Hu Q.-S. Org. Lett. 2007; 9: 343
- 4c Iwai T, Tanaka R, Sawamura M. Organometallics 2016; 35: 3959
- 4d Shimizu M, Yamamoto T. Tetrahedron Lett. 2020; 61: 152257
- 4e He P, Lu Y, Hu Q.-S. Tetrahedron Lett. 2007; 48: 5283
- 4f Suzuma Y, Yamamoto T, Ohta T, Ito Y. Chem. Lett. 2007; 36: 470
- 5 Huang Y, Pullarkat SA, Li Y, Leung P.-H. Chem. Commun. 2010; 46: 6950
- 6 Tan Y, Barrios-Landeros F, Hartwig JF. J. Am. Chem. Soc. 2012; 134: 3683
- 7a Anderson CE, Donde Y, Douglas CJ, Overman LE. J. Org. Chem. 2005; 70: 648
- 7b Donde Y, Overman LE. J. Am. Chem. Soc. 1999; 121: 2933
- 7c Cannon JS, Kirsch SF, Overman LE. J. Am. Chem. Soc. 2010; 132: 15185
- 7d Jautze S, Seiler P, Peters R. Angew. Chem. Int. Ed. 2007; 46: 1260
- 7e Fischer DF, Xin ZQ, Peters R. Angew. Chem. Int. Ed. 2007; 46: 7704
- 7f Weiss ME, Fischer DF, Xin Z.-q, Jautze S, Schweizer WB, Peters R. Angew. Chem. Int. Ed. 2006; 45: 5694
- 7g Leung P.-H, Ng K.-H, Li Y, White AJ. P, Williams DJ. Chem. Commun. 1999; 2435
- 8a Mo D.-L, Chen B, Ding C.-H, Dai L.-X, Ge G.-C, Hou X.-L. Organometallics 2013; 32: 4465
- 8b Zhang T.-K, Mo D.-L, Dai L.-X, Hou X.-L. Org. Lett. 2008; 10: 5337
- 8c Zhang T.-K, Mo D.-L, Dai L.-X, Hou X.-L. Org. Lett. 2008; 10: 3689
- 8d Mo D.-L, Yuan T, Ding C.-H, Dai L.-X, Hou X.-L. J. Org. Chem. 2013; 78: 11470
- 8e Yamamoto T, Akai Y, Suginome M. Angew. Chem. Int. Ed. 2014; 53: 12785
- 8f Zhang T.-K, Yuan K, Hou X.-L. J. Organomet. Chem. 2007; 692: 1912
- 9a Hayashi T, Yamasaki K. Chem. Rev. 2003; 103: 2829
- 9b Fagnou K, Lautens M. Chem. Rev. 2003; 103: 169
- 9c Jean M, Casanova B, Gnoatto S, van de Weghe P. Org. Biomol. Chem. 2015; 13: 9168
- 9d Edwards HJ, Hargrave JD, Penrose SD, Frost CG. Chem. Soc. Rev. 2010; 39: 2093
- 9e Heravi MM, Dehghani M, Zadsirjan V. Tetrahedron: Asymmetry 2016; 27: 513
- 10a Gutnov A. Eur. J. Org. Chem. 2008; 4547
- 10b Shockley SE, Holder JC, Stoltz BM. Org. Process Res. Dev. 2015; 19: 974
- 11 Chen M.-H, Mannathan S, Lin P.-S, Cheng C.-H. Chem. Eur. J. 2012; 18: 14918
- 12a Shirakawa E, Yasuhara Y, Hayashi T. Chem. Lett. 2006; 35: 768
- 12b Lin P.-S, Jeganmohan M, Cheng C.-H. Chem. Asian J. 2007; 2: 1409
- 12c Hong Y.-C, Gandeepan P, Mannathan S, Lee W.-T, Cheng C.-H. Org. Lett. 2014; 16: 2806
- 12d Meng J.-J, Gao M, Dong M, Wei Y.-P, Zhang W.-Q. Tetrahedron Lett. 2014; 55: 2107
- 12e Chen W, Sun L, Huang X, Wang J, Peng Y, Song G. Adv. Synth. Catal. 2015; 357: 1474
- 13 Wu C, Yue G, Nielsen CD.-T, Xu K, Hirao H, Zhou J. J. Am. Chem. Soc. 2016; 138: 742
- 14a Culkin DA, Hartwig JF. J. Am. Chem. Soc. 2001; 123: 5816
- 14b Semba K, Ohta N, Paulus F, Ohata M, Nakao Y. Chem. Eur. J. 2021; 27: 5035
- 15 Allred AL. J. Inorg. Nucl. Chem. 1961; 17: 215
- 16 Muller G, Panyella D, Rocamora M, Sales J, Font-Bardia M, Solans X. J. Chem. Soc. Dalton Trans. 1993; 2959
- 17 CCDC 2268818, 2268817, and 2268816 contain the supplementary crystallographic data for compounds Ni1, Ni2, and Pd1, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 18 1,3,3-Triphenylpropan-1-one (5a); Typical Procedure A 15 mL vial equipped with a stirring bar was charged with 3a (104 mg, 0.50 mmol) and 4a (105 mg, 0.55 mmol) under air and transferred to a glovebox with a N2 atmosphere. Ni2 (11 mg, 25 μmol), t-BuONa (4.8 mg, 50 μmol), MeOH (32 mg, 1.0 mmol), and THF (5.0 mL) were added, and the vial was capped with a PTFE sealing screw cap and taken out of the glovebox. The mixture was then stirred for 15 h at 60 °C. The product was isolated by MPLC [Biotage Sfär Silica HC D High Capacity Duo (20 μm, 25 g), hexane–EtOAc (100:0 to 90:10)] to give a colorless solid; yield: 107 mg (0.37 mmol, 74%). 1H NMR (400 MHz, CDCl3): δ = 7.96 (d, J = 6.5 Hz, 2 H), 7.60–7.52 (m, 1 H), 7.45 (t, J = 7.6 Hz, 2 H), 7.35–7.26 (m, 8 H), 7.19 (dt, J = 9.2, 4.4 Hz, 2 H), 4.85 (t, J = 7.3 Hz, 1 H), 3.76 (d, J = 7.3 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 197.95, 144.09, 136.97, 133.06, 128.56, 128.52, 128.02, 127.80, 126.34, 45.84, 44.66. The spectra were consistent with the reported values.21
- 19 Coumarin was not viable under the standard conditions.
- 20 Although neither 3a nor MeOH appeared to show a reaction with Ni2, Ni2 was decomposed after silica gel column chromatography. See the Supporting Information for details.
- 21 Parveen N, Saha R, Sekar G. Adv. Synth. Catal. 2017; 359: 3741