Synthesis 2024; 56(06): 1017-1025
DOI: 10.1055/a-2157-9100
paper
Emerging Trends in Glycoscience

Efficient Synthesis of Chirally Enriched 1H-Imidazo[1,2-b]pyrazole- and 4H-Imidazo[1,2-b][1,2,4]triazole-Based Bioactive Glycohybrids

Vinay Kumar Mishra
a   Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
,
Ghanshyam Tiwari
a   Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
,
Ashish Khanna
a   Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
,
Rajdeep Tyagi
b   Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
,
Ram Sagar
a   Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
b   Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
› Author Affiliations


Abstract

Carbohydrates, traditionally known for their energy-providing role, have gained significant attention in drug discovery due to their diverse bioactivities and stereodiversity. However, pure carbohydrate molecules often exhibit limited bioactivity and suboptimal chemical and physical characteristics. To address these challenges, bioactive scaffolds have been incorporated into carbohydrate to enhance their bioactivity and improve their overall properties. Among the various heterocyclic structural motifs known for their pharmacological properties, imidazo-pyrazole and imidazo-triazole skeleton have gained larger attention among synthetic and medicinal chemists as they possess good biological and pharmacological properties. The incorporation of these bioactive scaffolds with carbohydrates adopting developed efficient synthetic protocol to synthesize new class of imidazo-pyrazole and imidazo-triazole glycohybrid molecules is reported. The carbohydrate-derived α-iodo-2,3-dihydro-4H-pyran-4-ones have been identified as suitable precursors, which were coupled with various aminopyrazoles and aminotriazoles to obtain designed glycohybrids. Thus, various imidazo-pyrazole and imidazo-triazole based glycohybrids have been prepared efficiently in good to excellent yields. These new glycohybrids were evaluated for their anticancer activity and selected compounds were found to possess submicromolar anticancer activity against MCF-7 breast cancer cell line. These molecules could potentially be developed as new chemical entities in pharmaceutical chemistry and may encourage the use of carbohydrates in stereo-divergent synthesis and drug discovery processes.

Supporting Information



Publication History

Received: 31 July 2023

Accepted after revision: 21 August 2023

Accepted Manuscript online:
21 August 2023

Article published online:
02 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany