Subscribe to RSS
DOI: 10.1055/a-2160-3035
Primäre und sekundäre Lebertumore
Primary and secondary liver tumorsZusammenfassung
Die Leber kann von verschiedenen Malignomen betroffen sein. Bei gewissen Risikofaktoren steigt die Wahrscheinlichkeit der Entwicklung von lebereigenen Tumoren (primären Lebertumoren) an. Die häufigsten Tumormanifestationen sind allerdings sekundär durch Metastasen bedingt. Zwischen den verschiedenen zur Verfügung stehenden radiologischen Modalitäten bestehen in der Detektion und Charakterisierung von Leberläsionen relevante Unterschiede. Dabei werden konventioneller und kontrastmittelverstärkter Ultraschall (CEUS), Computertomografie (CT) und die Magnetresonanztomografie (MRT) routinehaft eingesetzt. Diese Diagnostikmethoden weisen dabei im gegenseitigen Vergleich Vor- und Nachteile auf. Ziel dieser Übersichtsarbeit ist es, die Rolle der einzelnen Modalitäten, häufige Bildmerkmale und die Rolle der unterschiedlichen Kontrastmittel in der Diagnostik von primären und sekundären Lebertumoren zusammenzufassen.
Abstract
The liver can be affected by various malignancies. Certain risk factors increase the probability of developing primary liver tumors. However, the most common tumor manifestations are secondary in nature (metastases). There are significant differences in the detection and characterization of liver lesions among the various available radiological imaging modalities. Conventional and contrast-enhanced ultrasound (CEUS), computed tomography (CT) as well as magnetic resonance imaging (MRI) are routinely used. These diagnostic methods exhibit certain strengths and weaknesses when compared. The aim of this review is to summarize the role of each modality, the tumor-specific manifestations, and the role of different contrast agents in the diagnosis of primary and secondary liver tumors.
Publication History
Article published online:
07 December 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Parkin DM, Bray F, Ferlay J. et al. Estimating the world cancer burden: Globocan 2000. International journal of cancer 2001; 94: 153-156 DOI: 10.1002/ijc.1440. (PMID: 11668491)
- 2 Mittal S, El-Serag HB. Epidemiology of HCC: consider the population. Journal of clinical gastroenterology 2013; 47 (Suppl. 00) S2-S6 DOI: 10.1097/MCG.0b013e3182872f29. (PMID: 23632345)
- 3 Choo SP, Tan WL, Goh BK. et al. Comparison of hepatocellular carcinoma in E astern versus W estern populations. Cancer 2016; 122: 3430-3446
- 4 Liangpunsakul S, Haber P, McCaughan GW. Alcoholic liver disease in asia, europe, and north America. Gastroenterology 2016; 150: 1786-1797 DOI: 10.1053/j.gastro.2016.02.043. (PMID: 26924091)
- 5 Lee YJ, Lee JM, Lee JS. et al. Hepatocellular carcinoma: diagnostic performance of multidetector CT and MR imaging – a systematic review and meta-analysis. Radiology 2015; 275: 97-109 DOI: 10.1148/radiol.14140690. (PMID: 25559230)
- 6 Ricke J, Steffen IG, Bargellini I. et al. Gadoxetic acid-based hepatobiliary MRI in hepatocellular carcinoma. JHEP Rep 2020; 2: 100173 DOI: 10.1016/j.jhepr.2020.100173. (PMID: 33103093)
- 7 Semaan S, Vietti Violi N, Lewis S. et al. Hepatocellular carcinoma detection in liver cirrhosis: diagnostic performance of contrast-enhanced CT vs. MRI with extracellular contrast vs. gadoxetic acid. European Radiology 2020; 30: 1020-1030
- 8 Renzulli M, Biselli M, Brocchi S. et al. New hallmark of hepatocellular carcinoma, early hepatocellular carcinoma and high-grade dysplastic nodules on Gd-EOB-DTPA MRI in patients with cirrhosis: a new diagnostic algorithm. Gut 2018; 67: 1674-1682
- 9 Golfieri R, Garzillo G, Ascanio S. et al. Focal lesions in the cirrhotic liver: their pivotal role in gadoxetic acid-enhanced MRI and recognition by the Western guidelines. Digestive Diseases 2014; 32: 696-704
- 10 Horowitz JM, Kamel IR, Arif-Tiwari H. et al. ACR Appropriateness Criteria® Chronic Liver Disease. J Am Coll Radiol 2017; 14 (Suppl. 05) S391-S405 DOI: 10.1016/j.jacr.2017.02.011. (PMID: 28473066)
- 11 Chernyak V, Fowler KJ, Kamaya A. et al. Liver Imaging Reporting and Data System (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients. Radiology 2018; 289: 816-830 DOI: 10.1148/radiol.2018181494. (PMID: 30251931)
- 12 Ralls P, Johnson M, Lee K. et al. Color Doppler sonography in hepatocellular carcinoma. American journal of physiologic imaging 1991; 6: 57-61 (PMID: 1651094)
- 13 Eisenbrey JR, Gabriel H, Savsani E. et al. Contrast-enhanced ultrasound (CEUS) in HCC diagnosis and assessment of tumor response to locoregional therapies. Abdominal Radiology 2021; 46: 3579-3595 DOI: 10.1007/s00261-021-03059-y. (PMID: 33825927)
- 14 Mavros MN, Economopoulos KP, Alexiou VG. et al. Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: systematic review and meta-analysis. JAMA surgery 2014; 149: 565-574
- 15 Zhang H, Yang T, Wu M. et al. Intrahepatic cholangiocarcinoma: epidemiology, risk factors, diagnosis and surgical management. Cancer letters 2016; 379: 198-205 DOI: 10.1016/j.canlet.2015.09.008. (PMID: 26409434)
- 16 Wang Y, Yang Q, Li S. et al. Imaging features of combined hepatocellular and cholangiocarcinoma compared with those of hepatocellular carcinoma and intrahepatic cholangiocellular carcinoma in a Chinese population. Clinical Radiology 2019; 74: 407.e1-407.e10
- 17 Jhaveri KS, Hosseini-Nik H. MRI of cholangiocarcinoma. Journal of Magnetic Resonance Imaging 2015; 42: 1165-1179 DOI: 10.1002/jmri.24810. (PMID: 25447417)
- 18 Horn SR, Stoltzfus KC, Lehrer EJ. et al. Epidemiology of liver metastases. Cancer Epidemiol 2020; 67: 101760 DOI: 10.1016/j.canep.2020.101760. (PMID: 32562887)
- 19 Ros PR, Rasmussen JF. Malignant liver tumors. Curr Probl Diagn Radiol 1989; 18: 95-124 DOI: 10.1016/0363-0188(89)90026-1. (PMID: 2544348)
- 20 Maclean D, Tsakok M, Gleeson F. et al. Comprehensive Imaging Characterization of Colorectal Liver Metastases. Front Oncol 2021; 11: 730854 DOI: 10.3389/fonc.2021.730854. (PMID: 34950575)
- 21 Ozaki K, Higuchi S, Kimura H. et al. Liver Metastases: Correlation between Imaging Features and Pathomolecular Environments. Radiographics 2022; 42: 1994-2013
- 22 Choi J. Imaging of hepatic metastases. Cancer Control 2006; 13: 6-12 DOI: 10.1177/107327480601300102. (PMID: 16508621)
- 23 Kim HJ, Lee SS, Byun JH. et al. Incremental value of liver MR imaging in patients with potentially curable colorectal hepatic metastasis detected at CT: a prospective comparison of diffusion-weighted imaging, gadoxetic acid-enhanced MR imaging, and a combination of both MR techniques. Radiology 2015; 274: 712-722
- 24 Blackledge MD, Leach MO, Collins DJ. et al. Computed diffusion-weighted MR imaging may improve tumor detection. Radiology 2011; 261: 573-581 DOI: 10.1148/radiol.11101919. (PMID: 21852566)
- 25 Whatcott CJ, Diep CH, Jiang P. et al. Desmoplasia in Primary Tumors and Metastatic Lesions of Pancreatic Cancer. Clin Cancer Res 2015; 21: 3561-3568 DOI: 10.1158/1078-0432.CCR-14-1051. (PMID: 25695692)
- 26 Henke E, Nandigama R, Ergun S. Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Front Mol Biosci 2019; 6: 160 DOI: 10.3389/fmolb.2019.00160. (PMID: 32118030)
- 27 Blachar A, Federle MP, Sosna J. Liver lesions with hepatic capsular retraction. Semin Ultrasound CT MR 2009; 30: 426-435 DOI: 10.1053/j.sult.2009.06.002. (PMID: 19842567)
- 28 Kelekis NL, Semelka RC, Woosley JT. Malignant lesions of the liver with high signal intensity on T1-weighted MR images. J Magn Reson Imaging 1996; 6: 291-294 DOI: 10.1002/jmri.1880060206. (PMID: 9132092)
- 29 Fleming M, Ravula S, Tatishchev SF. et al. Colorectal carcinoma: Pathologic aspects. J Gastrointest Oncol 2012; 3: 153-173 DOI: 10.3978/j.issn.2078-6891.2012.030. (PMID: 22943008)
- 30 Park JH, Kim JH. Pathologic differential diagnosis of metastatic carcinoma in the liver. Clin Mol Hepatol 2019; 25: 12-20 DOI: 10.3350/cmh.2018.0067. (PMID: 30300991)
- 31 Namasivayam S, Martin DR, Saini S. Imaging of liver metastases: MRI. Cancer Imaging 2007; 7: 2-9 DOI: 10.1102/1470-7330.2007.0002. (PMID: 17293303)
- 32 Outwater E, Tomaszewski JE, Daly JM. et al. Hepatic colorectal metastases: correlation of MR imaging and pathologic appearance. Radiology 1991; 180: 327-332 DOI: 10.1148/radiology.180.2.2068294. (PMID: 2068294)
- 33 Silva AC, Evans JM, McCullough AE. et al. MR imaging of hypervascular liver masses: a review of current techniques. Radiographics 2009; 29: 385-402 DOI: 10.1148/rg.292085123. (PMID: 19325055)
- 34 Baker ME, Pelley R. Hepatic metastases: basic principles and implications for radiologists. Radiology 1995; 197: 329-337 DOI: 10.1148/radiology.197.2.7480672. (PMID: 7480672)
- 35 Sica GT, Ji H, Ros PR. CT and MR imaging of hepatic metastases. AJR Am J Roentgenol 2000; 174: 691-698 DOI: 10.2214/ajr.174.3.1740691. (PMID: 10701611)
- 36 Mahfouz AE, Hamm B, Wolf KJ. Peripheral washout: a sign of malignancy on dynamic gadolinium-enhanced MR images of focal liver lesions. Radiology 1994; 190: 49-52 DOI: 10.1148/radiology.190.1.8259426. (PMID: 8259426)
- 37 Tang M, Li Y, Lin Z. et al. Hepatic nodules with arterial phase hyperenhancement and washout on enhanced computed tomography/magnetic resonance imaging: how to avoid pitfalls. Abdom Radiol (NY) 2020; 45: 3730-3742
- 38 Patnana M, Menias CO, Pickhardt PJ. et al. Liver Calcifications and Calcified Liver Masses: Pattern Recognition Approach on CT. AJR Am J Roentgenol 2018; 211: 76-86 DOI: 10.2214/AJR.18.19704. (PMID: 29667888)
- 39 Yu MH, Kim YJ, Park HS. et al. Imaging Patterns of Intratumoral Calcification in the Abdominopelvic Cavity. Korean J Radiol 2017; 18: 323-335 DOI: 10.3348/kjr.2017.18.2.323. (PMID: 28246512)
- 40 Rajesh S, Bansal K, Sureka B. et al. The imaging conundrum of hepatic lymphoma revisited. Insights Imaging 2015; 6: 679-692 DOI: 10.1007/s13244-015-0437-6. (PMID: 26443451)
- 41 Colagrande S, Calistri L, Grazzini G. et al. MRI features of primary hepatic lymphoma. Abdom Radiol (NY) 2018; 43: 2277-2287 DOI: 10.1007/s00261-018-1476-5. (PMID: 29460044)