Planta Med
DOI: 10.1055/a-2162-4018
Original Papers

Impact of Phylogenetically Diverse Bacterial Endophytes of Bergenia pacumbis on Bergenin Production in the Plant Cell Suspension Cultures[ # ]

Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
,
Martina Oberhofer
Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
,
Stefan Steinbrecher
Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
,
Sergey B. Zotchev
Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
› Author Affiliations
This work was funded by the University of Vienna.

Abstract

Plant in vitro cultures are potential sources for secondary metabolites. However, low productivity is often a major drawback for industrial application. Elicitation is an important strategy to improve product formation in vitro. In this context, endophytes are of special interest as biotic elicitors due to their possible interaction with the metabolism of the host plant. A total of 128 bacterial endophytes were isolated from the medicinal plant Bergenia pacumbis and taxonomically classified using 16S rRNA gene sequencing. Five strains belonging to different genera were grown in lysogeny broth and tryptic soy broth medium and cells as well as spent media were used as elicitors in cell suspension cultures of B. pacumbis. Production of the main bioactive compound bergenin was enhanced 3-fold (964 µg/g) after treatment with cells of Moraxella sp. or spent tryptic soy broth medium of Micrococcus sp. These results indicate that elicitation of plant cell suspension cultures with endophytic bacteria is a promising strategy for enhancing the production of desired plant metabolites.

# This work is dedicated to Professors Rudolf Bauer, Chlodwig Franz, Brigitte Kopp, and Hermann Stuppner for their invaluable contributions and commitment to Austrian pharmacognosy.




Publication History

Received: 19 June 2023

Accepted after revision: 23 August 2023

Article published online:
06 September 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Hardy K. Paleomedicine and the evolutionary context of medicinal plant use. Rev Bras Farmacog 2021; 31: 1-15
  • 2 Khan MSA, Ahmad I. Herbal Medicine: Current Trends and Future Prospects. In: Khan MSA, Ahmad I, Chattopadhyay D. eds. New Look to Phytomedicine. London: Academic Press; 2019: 3-13
  • 3 Noviana E, Indrayanto G, Rohman A. Advances in fingerprint analysis for standardization and quality control of herbal medicines. Front Pharmacol 2022; 13: 853023
  • 4 Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 2015; 33: 1582-1614
  • 5 Wawrosch C, Zotchev SB. Production of bioactive plant secondary metabolites through in vitro technologies–status and outlook. Appl Microbiol Biotechnol 2021; 105: 6649-6668
  • 6 Staniek A, Bouwmeester H, Fraser PD, Kayser O, Martens S, Tissier A, van der Krol S, Wessjohann L, Warzecha H. Natural products – learning chemistry from plants. Biotechnol J 2014; 9: 326-336
  • 7 Ullrich SF, Hagels H, Kayser O. Scopolamine: A journey from the field to clinics. Phytochem Rev 2017; 16: 333-353
  • 8 Gupta MM, Singh DV, Tripathi AK, Pandey R, Verma RK, Singh S, Shasany AK, Khanuja SPS. Simultaneous determination of vincristine, vinblastine, catharanthine, and vindoline in leaves of Catharanthus roseus by high-performance liquid chromatography. J Chromatogr Sci 2005; 43: 450-453
  • 9 Espinosa-Leal CA, Puente-Garza CA, García-Lara S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 2018; 248: 1-18
  • 10 Chandran H, Meena M, Barupal T, Sharma K. Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol Rep (Amst) 2020; 26: e00450
  • 11 Kreis W. Exploiting plant cell culture for natural product formation. J Appl Bot Food Qual 2019; 92: 216-225
  • 12 Halder M, Sarkar S, Jha S. Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng Life Sci 2019; 19: 880-895
  • 13 Naik PM, Al-Khayri JM. Abiotic and Biotic Elicitors–Role in Secondary Metabolites Production through in Vitro Culture of Medicinal Plants. In: Shanker AK, Shanker C. eds. Abiotic and Biotic Stress in Plants. Rijeka: IntechOpen; 2016: 247-277
  • 14 Radman R, Saez T, Bucke C, Keshavarz T. Elicitation of plants and microbial cell systems. Biotechnol Appl Biochem 2003; 37: 91-102
  • 15 Gao F, Yong Y, Dai C. Effects of endophytic fungal elicitor on two kinds of terpenoids production and physiological indexes in Euphorbia pekinensis suspension cells. J Med Plants Res 2011; 5: 4418-4425
  • 16 Tang Z, Rao L, Peng G, Zhou M, Shi G, Liang Y. Effects of endophytic fungus and its elicitors on cell status and alkaloid synthesis in cell suspension cultures of Catharanthus roseus . J Med Plants Res 2011; 5: 2192-2200
  • 17 Song X, Wu H, Yin Z, Lian M, Yin C. Endophytic bacteria isolated from Panax ginseng improves ginsenoside accumulation in adventitious ginseng root culture. Molecules 2017; 22: 837
  • 18 Ptak A, Morańska E, Warchoł M, Gurgul A, Skrzypek E, Dziurka M, Laurain-Mattar D, Spina R, Jaglarz A, Simlat M. Endophytic bacteria from in vitro culture of Leucojum aestivum L. a new source of galanthamine and elicitor of alkaloid biosynthesis. Sci Rep 2022; 12: 13700
  • 19 Kandel SL, Joubert PM, Doty SL. Bacterial endophyte colonization and distribution within plants. Microorganisms 2017; 5: 77
  • 20 Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH. Model systems in ecology: Dissecting the endophyte–grass literature. Trends Plant Sci 2006; 11: 428-433
  • 21 Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS. Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2008; 2: 404-416
  • 22 Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MDC, Glick BR. Plant growth-promoting bacterial endophytes. Microbiol Res 2016; 183: 92-99
  • 23 De Battista JP, Bacon CW, Severson R, Plattner RD, Bouton JH. Indole acetic acid production by the fungal endophyte of tall fescue. Agron J 1990; 82: 878-880
  • 24 Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P, Qin L. Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 2010; 165: 437-449
  • 25 Gohain A, Sharma A, Gogoi HJ, Cooper R, Kaur R, Mayik GA, Shaikh AM, Kovács B, Areche FO, Ansari MJ, Alabdallah NM, Al-Farga A. Bergenia pacumbis (Buch.-Ham. ex D.Don) C.Y.Wu & J.T.Pan: A comprehensive review on traditional uses, phytochemistry and pharmacology. Plants 2022; 11: 1129
  • 26 Zhang Y, Liao C, Li J, Liu X. A review on resource status, bioactive ingredients, clinical applications and biological progress in Bergenia . J Med Plants Res 2011; 5: 4396-4399
  • 27 Koul B, Kumar A, Yadav D, Jin JO. Bergenia genus: Traditional uses, phytochemistry and pharmacology. Molecules 2020; 25: 5555
  • 28 Liu Y, Xu Y, Song Q, Wang F, Sun L, Liu L, Yang X, Yi J, Bao Y, Ma H, Huang H, Yu C, Huang Y, Wu Y, Li Y. Anti-biofilm activities from Bergenia crassifolia leaves against Streptococcus mutans . Front Microbiol 2017; 8: 1738
  • 29 Kaur R, Kaur S. Evaluation of in vitro and in vivo antileishmanial potential of bergenin rich Bergenia ligulata (Wall.) Engl. root extract against visceral leishmaniasis in inbred BALB/c mice through immunomodulation. J Tradit Complement Med 2018; 8: 251-260
  • 30 Afshar K, Fleischmann N, Schmiemann G, Bleidorn J, Hummers-Pradier E, Friede T, Wegscheider K, Moore M, Gágyor I. Reducing antibiotic use for uncomplicated urinary tract infection in general practice by treatment with uva-ursi (REGATTA) – a double-blind, randomized, controlled comparative effectiveness trial. BMC Complement Altern Med 2018; 18: 203
  • 31 Nazir N, Koul S, Qurishi MA, Najar MH, Zargar MI. Evaluation of antioxidant and antimicrobial activities of Bergenin and its derivatives obtained by chemoenzymatic synthesis. Eur J Med Chem 2011; 46: 2415-2420
  • 32 Höninger P. Production of Arbutin and Bergenin in Callus Cultures of Bergenia pacumbis (Buch.-Ham. ex D.Don) C.Y.Wu & J.T.Pan. [Diploma Thesis]. Vienna: University of Vienna; 2020
  • 33 Dhalwal K, Shinde VM, Biradar YS, Mahadik KR. Simultaneous quantification of bergenin, catechin, and gallic acid from Bergenia ciliata and Bergenia ligulata by using thin-layer chromatography. J Food Comp Anal 2008; 21: 496-500
  • 34 Srivastava S, Rawat AKS. Botanical and phytochemical comparison of three Bergenia species. J Sci Ind Res (India) 2008; 67: 65-72
  • 35 Oberhofer M, Malfent F, Zehl M, Urban E, Wackerlig J, Reznicek G, Vignolle GA, Rückert C, Busche T, Wibberg D, Zotchev SB. Biosynthetic potential of the endophytic fungus Helotiales sp. BL73 revealed via compound identification and genome mining. Appl Environ Microbiol 2022; 88: e0251021
  • 36 Isah T, Umar S, Mujib A, Sharma MP, Rajasekharan PE, Zafar N, Frukh A. Secondary metabolism of pharmaceuticals in the plant in vitro cultures: Strategies, approaches, and limitations to achieving higher yield. Plant Cell Tissue Organ Cult (PCTOC) 2018; 132: 239-265
  • 37 Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó R, Palazon J. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 2016; 21: 182
  • 38 Khare E, Mishra J, Arora NK. Multifaceted interactions between endophytes and plant: Developments and prospects. Front Microbiol 2018; 9: 2732
  • 39 Verma P, Khan SA, Mathur AK, Shanker K, Kalra A. Fungal endophytes enhanced the growth and production kinetics of Vinca minor hairy roots and cell suspensions grown in bioreactor. Plant Cell Tissue Organ Cult (PCTOC) 2014; 118: 257-268
  • 40 Aleynova OA, Nityagovsky NN, Suprun AR, Kiselev KV. Enhancement of stilbene biosynthesis in grape-cell cultures by natural products based on endophytes of the wild grape species Vitis amurensis RUPR. Appl Biochem Microbiol 2022; 58: 45-56
  • 41 Khan SA, Verma P, Banerjee S, Chaterjee A, Tandon S, Kalra A, Khaliq A, Rahman LU. Pyrethrin accumulation in elicited hairy root cultures of Chrysanthemum cinerariaefolium . Plant Growth Regul 2017; 81: 365-376
  • 42 Chamkhi I, Benali T, Aanniz T, El Menyiy N, Guaouguaou FE, El Omari N, El-Shazly M, Zengin G, Bouyahya A. Plant–microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. Plant Physiol Biochem 2021; 167: 269-295
  • 43 Manero FJG, Algar E, Gomez MSM, Sierra MDS, Solano BR. Elicitation of secondary metabolism in Hypericum perforatum by rhizosphere bacteria and derived elicitors in seedlings and shoot cultures. Pharm Biol 2012; 50: 1201-1209
  • 44 Malla S. Micropropagation of the Endangered Nepalese Medicinal Plant Bergenia ligulata (Wall) Engl. [Dissertation]. Vienna: University of Vienna; 1999
  • 45 Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 1962; 15: 473-497
  • 46 Stecher G, Tamura K, Kumar S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol Biol Evol 2020; 37: 1237-1239
  • 47 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35: 1547-1549
  • 48 Boros B, Jakabová S, Madarász T, Molnár R, Galambosi B, Kilár F, Felinger A, Farkas Á. Validated HPLC method for simultaneous quantitation of bergenin, arbutin, and gallic acid in leaves of different Bergenia species. Chromatographia 2014; 77: 1129-1135
  • 49 Kurtböke I. Selective isolation of rare actinomycetes. Nambour: Queensland Complete Printing Services; 2003