Subscribe to RSS
DOI: 10.1055/a-2168-2063
Radioembolisation mit Harz- und Glas-Mikrosphären
Ein umfassendes Update von der Indikationsstellung bis zur NachsorgeRadioembolization using resin- and glass-microspheresA comprehensive update from indication to follow-upDie transarterielle Radioembolisation (TARE) ist eine lokal ablative Therapieoption bei primären und sekundären Lebertumoren mit leberdominanter Erkrankung. Dieser Artikel gibt einen Überblick über die gängigsten Indikationen, die Patientenselektion, die Therapieplanung und -durchführung sowie die Nachsorge der Patienten. Der Fokus liegt auf Yttrium-90-beladenen Glas- und Harzmikrosphären, wobei weite Teile dieser Übersicht auch für Holmium-166 beladene Mikrosphären gelten.
Abstract
Transarterial radioembolization (TARE) or synonymously used selective internal radiotherapy (SIRT) is a local ablative therapy option for primary and secondary liver tumors with liver-dominant disease. Close cooperation of interventional radiology and nuclear medicine is necessary for the successful implementation of this therapy. This detailed educational article will provide an overview of the most common indications, patient selection, therapy planning and excecution, as well as patient follow-up. The main focus will be on yttrium-90 loaded glass and resin microspheres; however, large parts of this review will also apply to holmium-166 microspheres.
Take Home Message
Nichtsdestotrotz zeigen diese Daten, dass Patienten in Abhängigkeit verschiedener klinischen Parameter (beispielsweise jüngeres Alter, Patienten mit niedriger Tumorlast, Patienten ohne ethyltoxische Genese des HCC und ohne Leberzirrhose) eher von einer Kombinationstherapie profitieren könnten. Weitere prospektive Studien, insbesondere im Vergleich mit anderen systemischen Therapieoptionen, sind derzeit bei HCC noch ausstehend.
Take Home Message
Zusammenfassend lässt sich festhalten, dass die 99mTc-MAA-Bildgebung eine wichtige Rolle bei der Bewertung der sicheren Durchführbarkeit einer TARE und der genauen Festlegung des Therapieplans spielt und daher bei jedem Patienten erfolgen sollte [80]. Darüber hinaus ist die 99mTc-MAA-Bildgebung für die prätherapeutische Dosimetrie bei Glas- und Harzmikrosphären obligat [92] [93].
Die Eignung des Patienten zur Durchführung einer TARE hängt neben klassischen Indikationskriterien auch von individuellen Befunden im Rahmen der Leberangiografie und 99mTc-MAA-Bildgebung ab, welche eine obligate Vorrausetzung vor Durchführung einer TARE darstellen.
Take Home Message
Für jeden Patienten sollte das TARE-Team einen personalisierten, individuellen Therapieplan unter Berücksichtigung des hepatischen Zielvolumens, der Wirksamkeit und Toxizität der TARE in Übereinstimmung mit den Patientenmerkmalen und den strategischen Behandlungszielen definieren.
Take Home Message
Insgesamt ist jedoch festzuhalten, dass die Inzidenz schwerwiegender Komplikationen nach einer TARE niedrig ist.
Take Home Message
Eine Radioembolization induced Liver Disease (REILD) kann in den meisten Fällen durch die Überprüfung der Leberfunktion mit entsprechender Anpassung der therapeutischen Strategie und medikamentöser Prophylaxe verhindert werden.
-
Die Grundlage für die Durchführbarkeit einer transarteriellen Radioembolisation (TARE) ist die duale Gefäßversorgung der Leber durch die A. hepatica und die Pfortader. Während primäre und sekundäre Lebermalignome überwiegend über die A. hepatica versorgt werden, erfolgt die Versorgung der Hepatozyten größtenteils über die Pfortader. Dies ermöglicht nach intraarterieller Applikation von radioaktiv beladenen Mikrosphären hohe Tumordosen unter Schonung des gesunden Leberparenchyms.
-
Die TARE ist eine sichere und wirksame Therapieoption bei verschiedenen primären und sekundären Lebertumoren. Die aktuelle Datenlage rechtfertigt den Einsatz bei hepatozellulären Karzinomen (HCC), cholangiozellulären Karzinomen (CCC) sowie bei hepatisch metastasierten kolorektalen Karzinomen (CRC) und neuroendokrinen Tumoren (NET). Für andere Tumorentitäten ist die Datenlage aktuell limitiert, insbesondere prospektive Daten sind selten.
-
Die Indikation zur Durchführung der Therapie sollte im Rahmen einer interdisziplinären Tumorkonferenz unter Berücksichtigung der klinischen Situation einschließlich Leberfunktion, potenziell lebertoxischer Vortherapien und Evaluation möglicher Alternativen gestellt werden.
-
Die Patientenselektion erfordert eine multidisziplinäre Evaluation verschiedener klinischer und bildgebender Verfahren durch das TARE-Team bestehend aus interventionellen Radiologen, Nuklearmedizinern, Medizinphysikern und, idealerweise, eines Hepatologen.
-
Die Eignung des Patienten zur Durchführung einer TARE hängt neben klassischen Indikationskriterien insbesondere von der Leberangiografie, der Verteilung von 99mTc-MAA-Bildgebung (MAA=makro-aggregiertes Albumin) in der Leber und etwaigen arteriovenösen Shuntverbindungen ab. Daher gilt die Durchführung der SPECT (idealerweise SPECT/CT) nach der MAA-Angiografie als obligate Voraussetzung vor Durchführung einer TARE.
-
Die TARE wird in enger Kooperation der interventionellen Radiologie und Nuklearmedizin durchgeführt. Die Applikation sollte langsam und unter ständiger Flusskontrolle erfolgen. Insbesondere ein Reflux muss frühzeitig erkannt werden und kann einen Therapieabbruch zur Folge haben.
-
Hepatische und extrahepatische Komplikationen nach einer TARE sind relativ selten. Eine sorgfältige Patientenselektion und Beurteilung der klinischen, laborchemischen und bildgebenden Befunde (z.B. MAA-SPECT/CT, ggf. Cone Beam CT) im Rahmen der prätherapeutischen Abklärung kann zur frühzeitigen Identifikation und Prävention zahlreicher therapieassoziierter Komplikationen beitragen.
Schlüsselwörter
transarterielle Radioembolisation - TARE - selektive interne Radiotherapie - SIRT - LebertumorKeywords
transarterial radioembolisation - TARE - selective internal radiotherapy radiotherapy - SIRT - liver tumourPublication History
Article published online:
07 December 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Bierman HR, Byron Jr RL, Kelley KH. et al. Studies on the blood supply of tumors in man. III. Vascular patterns of the liver by hepatic arteriography in vivo. J Natl Cancer Inst 1951; 12: 107-131 (PMID: 14874125)
- 2 Saini A, Wallace A, Alzubaidi S. et al. History and evolution of yttrium-90 radioembolization for hepatocellular carcinoma. J Clin Med 2019; 8: 55 DOI: 10.3390/jcm8010055.
- 3 Grady ED, Sale W, Nicolson WP. et al. Intra-arterial radioisotopes to treat cancer. Am Surg 1960; 26: 678-684 (PMID: 13707649)
- 4 Ariel I. Intra-arterial injection of radioactive microspheres of ceramic in the treatment of malignant tumors. indications and clinical results. Minerva Med 1965; 56: 2030-2037 (PMID: 14330480)
- 5 Ariel IM. Treatment of inoperable primary pancreatic and liver cancer by the intra-arterial administration of radioactive isotopes (Y90 radiating microspheres). Ann Surg 1965; 162: 267-278 DOI: 10.1097/00000658-196508000-00018. (PMID: 14327011)
- 6 Alsultan AA, Braat A, Smits MLJ. et al. Current status and future direction of hepatic radioembolisation. Clin Oncol (R Coll Radiol) 2021; 33: 106-116 DOI: 10.1016/j.clon.2020.12.003. (PMID: 33358630)
- 7 Ahmadzadehfar H, Ilhan H, Lam M. et al. Radioembolization, principles and indications. Nuklearmedizin 2022; 61: 262-272 DOI: 10.1055/a-1759-4238. (PMID: 35354218)
- 8 Zacherl MJ, Ilhan H. Radioembolisation primärer und sekundärer Lebermalignome mit Holmium-166-Mikrosphären – eine kurze Übersicht. Angewandte Nuklearmedizin 2023; 46: 307-311
- 9 Brosch-Lenz J, Delker A, Ilhan H. Prä- und posttherapeutische Dosimetrie der Radioembolisation. Angewandte Nuklearmedizin. Angewandte Nuklearmedizin 2023; 46: 312-322
- 10 Chakravarty R, Dash A, Pillai MR. Availability of yttrium-90 from strontium-90: a nuclear medicine perspective. Cancer Biother Radiopharm 2012; 27: 621-641 DOI: 10.1089/cbr.2012.1285. (PMID: 23009585)
- 11 Weber M, Lam M, Chiesa C. et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging 2022; 49: 1682-1699 DOI: 10.1007/s00259-021-05600-z.
- 12 Westcott MA, Coldwell DM, Liu DM. et al. The development, commercialization, and clinical context of yttrium-90 radiolabeled resin and glass microspheres. Adv Radiat Oncol 2016; 1: 351-364 DOI: 10.1016/j.adro.2016.08.003. (PMID: 28740906)
- 13 Sun H, Yang H, Mao Y. Personalized treatment for hepatocellular carcinoma in the era of targeted medicine and bioengineering. Front Pharmacol 2023; 14: 1150151 DOI: 10.3389/fphar.2023.1150151. (PMID: 37214451)
- 14 Moris D, Pawlik TM. Personalized treatment in patients with colorectal liver metastases. J Surg Res 2017; 216: 26-29 DOI: 10.1016/j.jss.2017.04.013. (PMID: 28807210)
- 15 Mahnken AH. Current status of transarterial radioembolization. World J Radiol 2016; 8: 449-459 DOI: 10.4329/wjr.v8.i5.449. (PMID: 27247711)
- 16 Lucatelli P, Guiu B. 2022 Update of BCLC treatment algorithm of HCC: what's new for interventional radiologists?. Cardiovasc Intervent Radiol 2022; 45: 275-276 DOI: 10.1007/s00270-021-03047-1. (PMID: 35088139)
- 17 Reig M, Forner A, Rimola J. et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol 2022; 76: 681-693 DOI: 10.1016/j.jhep.2021.11.018. (PMID: 34801630)
- 18 Hamad A, Aziz H, Kamel IR. et al. Yttrium-90 radioembolization: current indications and outcomes. J Gastrointest Surg 2023; 27: 604-614 DOI: 10.1007/s11605-022-05559-8. (PMID: 36547759)
- 19 Vouche M, Habib A, Ward TJ. et al. Unresectable solitary hepatocellular carcinoma not amenable to radiofrequency ablation: multicenter radiology-pathology correlation and survival of radiation segmentectomy. Hepatology 2014; 60: 192-201 DOI: 10.1002/hep.27057. (PMID: 24691943)
- 20 Riaz A, Gates VL, Atassi B. et al. Radiation segmentectomy: a novel approach to increase safety and efficacy of radioembolization. Int J Radiat Oncol Biol Phys 2011; 79: 163-171 DOI: 10.1016/j.ijrobp.2009.10.062. (PMID: 20421150)
- 21 Biederman DM, Titano JJ, Bishay VL. et al. Radiation segmentectomy versus TACE combined with microwave ablation for unresectable solitary hepatocellular carcinoma up to 3 cm: a propensity score matching study. Radiology 2017; 283: 895-905 DOI: 10.1148/radiol.2016160718.
- 22 Salem R, Johnson GE, Kim E. et al. Yttrium-90 radioembolization for the treatment of solitary, unresectable HCC: the LEGACY Study. Hepatology 2021; 74: 2342-2352 DOI: 10.1002/hep.31819. (PMID: 33739462)
- 23 El Fouly A, Ertle J, El Dorry A. et al. In intermediate stage hepatocellular carcinoma: radioembolization with yttrium 90 or chemoembolization?. Liver Int 2015; 35: 627-635 DOI: 10.1111/liv.12637. (PMID: 25752327)
- 24 Salem R, Gordon AC, Mouli S. et al. Y90 radioembolization significantly prolongs time to progression compared with chemoembolization in patients with hepatocellular carcinoma. Gastroenterology 2016; 151: 1155-1163 e1152 DOI: 10.1053/j.gastro.2016.08.029.
- 25 Salem R, Gabr A, Riaz A. et al. Institutional decision to adopt Y90 as primary treatment for hepatocellular carcinoma informed by a 1,000-patient 15-year experience. Hepatology 2018; 68: 1429-1440 DOI: 10.1002/hep.29691. (PMID: 29194711)
- 26 Dhondt E, Lambert B, Hermie L. et al. (90)Y Radioembolization versus drug-eluting bead chemoembolization for unresectable hepatocellular carcinoma: results from the TRACE phase II randomized controlled trial. Radiology 2022; 303: 699-710 DOI: 10.1148/radiol.211806.
- 27 Salem R, Lewandowski RJ, Mulcahy MF. et al. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology 2010; 138: 52-64 DOI: 10.1053/j.gastro.2009.09.006. (PMID: 19766639)
- 28 Hilgard P, Hamami M, Fouly AE. et al. Radioembolization with yttrium-90 glass microspheres in hepatocellular carcinoma: European experience on safety and long-term survival. Hepatology 2010; 52: 1741-1749 DOI: 10.1002/hep.23944.
- 29 Sangro B, Carpanese L, Cianni R. et al. Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation. Hepatology 2011; 54: 868-878 DOI: 10.1002/hep.24451. (PMID: 21618574)
- 30 Vilgrain V, Pereira H, Assenat E. et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol 2017; 18: 1624-1636 DOI: 10.1016/S1470-2045(17)30683-6.
- 31 Chow PKH, Gandhi M, Tan SB. et al. SIRveNIB: selective internal radiation therapy versus sorafenib in Asia-Pacific patients with hepatocellular carcinoma. J Clin Oncol 2018; 36: 1913-1921 DOI: 10.1200/JCO.2017.76.0892.
- 32 Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF). Diagnostik und Therapie des Hepatozellulären Karzinoms und biliärer Karzinome. Langversion 3.0, 2022. AWMF-Registernummer: 032/053OL. Accessed September 24, 2023 at: https://www.leitlinienprogramm-onkologie.de/leitlinien/hcc-und-biliaere-karzinome/
- 33 Ricke J, Klumpen HJ, Amthauer H. et al. Impact of combined selective internal radiation therapy and sorafenib on survival in advanced hepatocellular carcinoma. J Hepatol 2019; 71: 1164-1174 DOI: 10.1016/j.jhep.2019.08.006. (PMID: 31421157)
- 34 Luo J, Jiang Y, Chen X. et al. Prognostic value and nomograms of proximal margin distance in gastric cancer with radical distal gastrectomy. Chin J Cancer Res 2020; 32: 186-196 DOI: 10.21147/j.issn.1000-9604.2020.02.06.
- 35 Kaneko R, Sato Y, Kobayashi Y. Cholangiocarcinoma prognosis varies over time depending on tumor site and pathology. J Gastrointestin Liver Dis 2018; 27: 59-66 DOI: 10.15403/jgld.2014.1121.271.kak. (PMID: 29557416)
- 36 Al-Adra DP, Gill RS, Axford SJ. et al. Treatment of unresectable intrahepatic cholangiocarcinoma with yttrium-90 radioembolization: a systematic review and pooled analysis. Eur J Surg Oncol 2015; 41: 120-127 DOI: 10.1016/j.ejso.2014.09.007.
- 37 Boehm LM, Jayakrishnan TT, Miura JT. et al. Comparative effectiveness of hepatic artery based therapies for unresectable intrahepatic cholangiocarcinoma. J Surg Oncol 2015; 111: 213-220 DOI: 10.1002/jso.23781. (PMID: 25176325)
- 38 Mouli S, Memon K, Baker T. et al. Yttrium-90 radioembolization for intrahepatic cholangiocarcinoma: safety, response, and survival analysis. J Vasc Interv Radiol 2013; 24: 1227-1234 DOI: 10.1016/j.jvir.2013.02.031. (PMID: 23602420)
- 39 Zhen Y, Liu B, Chang Z. et al. A pooled analysis of transarterial radioembolization with yttrium-90 microspheres for the treatment of unresectable intrahepatic cholangiocarcinoma. Onco Targets Ther 2019; 12: 4489-4498 DOI: 10.2147/OTT.S202875.
- 40 White J, Carolan-Rees G, Dale M. et al. Yttrium-90 transarterial radioembolization for chemotherapy-refractory intrahepatic cholangiocarcinoma: a prospective, observational study. J Vasc Interv Radiol 2019; 30: 1185-1192 DOI: 10.1016/j.jvir.2019.03.018. (PMID: 31255499)
- 41 Mosconi C, Solaini L, Vara G. et al. Transarterial chemoembolization and radioembolization for unresectable intrahepatic cholangiocarcinoma – a systemic review and meta-analysis. Cardiovasc Intervent Radiol 2021; 44: 728-738 DOI: 10.1007/s00270-021-02800-w. (PMID: 33709272)
- 42 Kohler M, Harders F, Lohofer F. et al. Prognostic factors for overall survival in advanced intrahepatic cholangiocarcinoma treated with yttrium-90 radioembolization. J Clin Med 2019; 9: 56 DOI: 10.3390/jcm9010056.
- 43 Edeline J, Touchefeu Y, Guiu B. et al. Radioembolization plus chemotherapy for first-line treatment of locally advanced intrahepatic cholangiocarcinoma: a phase 2 clinical trial. JAMA Oncol 2020; 6: 51-59 DOI: 10.1001/jamaoncol.2019.3702. (PMID: 31670746)
- 44 Vayrynen V, Wirta EV, Seppala T. et al. Incidence and management of patients with colorectal cancer and synchronous and metachronous colorectal metastases: a population-based study. BJS Open 2020; 4: 685-692 DOI: 10.1002/bjs5.50299.
- 45 Van Hazel G, Blackwell A, Anderson J. et al. Randomised phase 2 trial of SIR-Spheres plus fluorouracil/leucovorin chemotherapy versus fluorouracil/leucovorin chemotherapy alone in advanced colorectal cancer. J Surg Oncol 2004; 88: 78-85 DOI: 10.1002/jso.20141. (PMID: 15499601)
- 46 van Hazel GA, Heinemann V, Sharma NK. et al. SIRFLOX: randomized phase III trial comparing first-line mFOLFOX6 (plus or minus bevacizumab) versus mFOLFOX6 (plus or minus bevacizumab) plus selective internal radiation therapy in patients with metastatic colorectal cancer. J Clin Oncol 2016; 34: 1723-1731 DOI: 10.1200/JCO.2015.66.1181. (PMID: 26903575)
- 47 Wasan HS, Gibbs P, Sharma NK. et al. First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): a combined analysis of three multicentre, randomised, phase 3 trials. Lancet Oncol 2017; 18: 1159-1171 DOI: 10.1016/S1470-2045(17)30457-6.
- 48 Wolstenholme J, Fusco F, Gray AM. et al. Quality of life in the FOXFIRE, SIRFLOX and FOXFIRE-global randomised trials of selective internal radiotherapy for metastatic colorectal cancer. Int J Cancer 2020; 147: 1078-1085 DOI: 10.1002/ijc.32828. (PMID: 31840815)
- 49 Gibbs P, Heinemann V, Sharma NK. et al. Effect of primary tumor side on survival outcomes in untreated patients with metastatic colorectal cancer when selective internal radiation therapy is added to chemotherapy: combined analysis of two randomized controlled studies. Clin Colorectal Cancer 2018; 17: e617-e629 DOI: 10.1016/j.clcc.2018.06.001.
- 50 Mulcahy MF, Mahvash A, Pracht M. et al. Radioembolization with chemotherapy for colorectal liver metastases: a randomized, open-label, international, multicenter, phase III trial. J Clin Oncol 2021; 39: 3897-3907 DOI: 10.1200/JCO.21.01839.
- 51 Rostambeigi N, Dekarske AS, Austin EE. et al. Cost effectiveness of radioembolization compared with conventional transarterial chemoembolization for treatment of hepatocellular carcinoma. J Vasc Interv Radiol 2014; 25: 1075-1084 DOI: 10.1016/j.jvir.2014.04.014.
- 52 Lentz RW, Messersmith WA. Transarterial radioembolization in patients with unresectable colorectal cancer liver metastases. J Clin Oncol 2021; 39: 3887-3889 DOI: 10.1200/JCO.21.01993. (PMID: 34541862)
- 53 Vinal D, Minaya-Bravo A, Prieto I. et al. Ytrrium-90 transarterial radioembolization in patients with gastrointestinal malignancies. Clin Transl Oncol 2022; 24: 796-808 DOI: 10.1007/s12094-021-02745-z.
- 54 Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF). S3-Leitlinie Kolorektales Karzinom. Langversion 2.1, 2019. AWMF Registrierungsnummer: 021/007OL. Accessed September 24, 2023 at: http://www.leitlinienprogrammonkologie.de/leitlinien/kolorektales-karzinom/
- 55 Cervantes A, Adam R, Rosello S. et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2023; 34: 10-32 DOI: 10.1016/j.annonc.2022.10.003. (PMID: 36307056)
- 56 Muttillo EM, Mazzarella G, Picardi B. et al. Treatment strategies for neuroendocrine liver metastases: a systematic review. HPB (Oxford) 2022; 24: 1832-1843 DOI: 10.1016/j.hpb.2022.06.009. (PMID: 35794053)
- 57 Dasari A, Shen C, Halperin D. et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol 2017; 3: 1335-1342 DOI: 10.1001/jamaoncol.2017.0589.
- 58 Mahuron KM, Singh G. Defining a new classification system for the surgical management of neuroendocrine tumor liver metastases. J Clin Med 2023; 12: 2456 DOI: 10.3390/jcm12072456. (PMID: 37048539)
- 59 Pavel M, Oberg K, Falconi M. et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2020; 31: 844-860 DOI: 10.1016/j.annonc.2020.03.304. (PMID: 32272208)
- 60 Kennedy A, Bester L, Salem R. et al. Role of hepatic intra-arterial therapies in metastatic neuroendocrine tumours (NET): guidelines from the NET-Liver-Metastases Consensus Conference. HPB (Oxford) 2015; 17: 29-37 DOI: 10.1111/hpb.12326.
- 61 Braat A, Kappadath SC, Ahmadzadehfar H. et al. Radioembolization with (90)Y resin microspheres of neuroendocrine liver metastases: international multicenter study on efficacy and toxicity. Cardiovasc Intervent Radiol 2019; 42: 413-425 DOI: 10.1007/s00270-018-2148-0.
- 62 Vyleta M, Coldwell D. Radioembolization in the treatment of neuroendocrine tumor metastases to the liver. Int J Hepatol 2011; 2011: 785315 DOI: 10.4061/2011/785315. (PMID: 22235376)
- 63 Hennrich U, Kopka K. Lutathera((R)): the first FDA- and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals (Basel) 2019; 12: 114 DOI: 10.3390/ph12030114. (PMID: 31362406)
- 64 Rudisile S, Gosewisch A, Wenter V. et al. Salvage PRRT with (177) Lu-DOTA-octreotate in extensively pretreated patients with metastatic neuroendocrine tumor (NET): dosimetry, toxicity, efficacy, and survival. BMC Cancer 2019; 19: 788 DOI: 10.1186/s12885-019-6000-y.
- 65 Braat A, Ahmadzadehfar H, Kappadath SC. et al. Radioembolization with (90)Y resin microspheres of neuroendocrine liver metastases after initial peptide receptor radionuclide therapy. Cardiovasc Intervent Radiol 2020; 43: 246-253 DOI: 10.1007/s00270-019-02350-2.
- 66 Huang M, Geng M-y, Ding J. Antitumor pharmacological research in the era of personalized medicine. Acta Pharmacologica Sinica 2022; 43: 3015-3020 DOI: 10.1038/s41401-022-01023-0. (PMID: 36424452)
- 67 Fendler WP, Philippe Tiega DB, Ilhan H. et al. Validation of several SUV-based parameters derived from 18F-FDG PET for prediction of survival after SIRT of hepatic metastases from colorectal cancer. J Nucl Med 2013; 54: 1202-1208 DOI: 10.2967/jnumed.112.116426.
- 68 Ilhan H, Goritschan A, Paprottka P. et al. Predictive value of 99mTc-MAA SPECT for 90Y-labeled resin microsphere distribution in radioembolization of primary and secondary hepatic tumors. J Nucl Med 2015; 56: 1654-1660 DOI: 10.2967/jnumed.115.162685. (PMID: 26315830)
- 69 Bozkurt MF, Salanci BV, Ugur O. Intra-arterial radionuclide therapies for liver tumors. Semin Nucl Med 2016; 46: 324-339 DOI: 10.1053/j.semnuclmed.2016.01.008. (PMID: 27237442)
- 70 Ahmadzadehfar H, Sabet A, Biermann K. et al. The significance of 99mTc-MAA SPECT/CT liver perfusion imaging in treatment planning for 90Y-microsphere selective internal radiation treatment. J Nucl Med 2010; 51: 1206-1212 DOI: 10.2967/jnumed.109.074559. (PMID: 20660379)
- 71 Powerski MJ, Erxleben C, Scheurig-Munkler C. et al. Anatomic variants of arteries often coil-occluded prior to hepatic radioembolization. Acta Radiol 2015; 56: 159-165 DOI: 10.1177/0284185114522148.
- 72 van den Hoven AF, Smits ML, de Keizer B. et al. Identifying aberrant hepatic arteries prior to intra-arterial radioembolization. Cardiovasc Intervent Radiol 2014; 37: 1482-1493 DOI: 10.1007/s00270-014-0845-x. (PMID: 24469409)
- 73 Moustafa AS, Abdel Aal AK, Ertel N. et al. Chemoembolization of hepatocellular carcinoma with extrahepatic collateral blood supply: anatomic and technical considerations. Radiographics 2017; 37: 963-977 DOI: 10.1148/rg.2017160122.
- 74 Burgmans MC, Kao YH, Irani FG. et al. Radioembolization with infusion of yttrium-90 microspheres into a right inferior phrenic artery with hepatic tumor supply is feasible and safe. J Vasc Interv Radiol 2012; 23: 1294-1301 DOI: 10.1016/j.jvir.2012.07.009.
- 75 Abdelmaksoud MH, Louie JD, Kothary N. et al. Embolization of parasitized extrahepatic arteries to reestablish intrahepatic arterial supply to tumors before yttrium-90 radioembolization. J Vasc Interv Radiol 2011; 22: 1355-1362 DOI: 10.1016/j.jvir.2011.06.007.
- 76 Favelier S, Germain T, Genson PY. et al. Anatomy of liver arteries for interventional radiology. Diagn Interv Imaging 2015; 96: 537-546 DOI: 10.1016/j.diii.2013.12.001. (PMID: 24534562)
- 77 Hamoui N, Minocha J, Memon K. et al. Prophylactic embolization of the gastroduodenal and right gastric arteries is not routinely necessary before radioembolization with glass microspheres. J Vasc Interv Radiol 2013; 24: 1743-1745 DOI: 10.1016/j.jvir.2013.07.011.
- 78 Wallace MJ, Murthy R, Kamat PP. et al. Impact of C-arm CT on hepatic arterial interventions for hepatic malignancies. J Vasc Interv Radiol 2007; 18: 1500-1507 DOI: 10.1016/j.jvir.2007.07.021. (PMID: 18057284)
- 79 Louie JD, Kothary N, Kuo WT. et al. Incorporating cone-beam CT into the treatment planning for yttrium-90 radioembolization. J Vasc Interv Radiol 2009; 20: 606-613 DOI: 10.1016/j.jvir.2009.01.021.
- 80 Levillain H, Bagni O, Deroose CM. et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur J Nucl Med Mol Imaging 2021; 48: 1570-1584 DOI: 10.1007/s00259-020-05163-5.
- 81 Gregory J, Tselikas L, Allimant C. et al. Defining textbook outcome for selective internal radiation therapy of hepatocellular carcinoma: an international expert study. Eur J Nucl Med Mol Imaging 2023; 50: 921-928 DOI: 10.1007/s00259-022-06002-5. (PMID: 36282299)
- 82 Kim HC, Kim GM. Radiation pneumonitis following yttrium-90 radioembolization: a Korean multicenter study. Front Oncol 2023; 13: 977160 DOI: 10.3389/fonc.2023.977160. (PMID: 36726383)
- 83 Ilhan H, Todica A. „Auf den Punkt gebracht“ − Die Radioembolisation primärer und sekundärer Lebertumoren mit unterschiedlichen Mikrosphären. Nuklearmediziner 2018; 41: 145-156
- 84 Dittmann H, Kopp D, Kupferschlaeger J. et al. A prospective study of quantitative SPECT/CT for evaluation of lung shunt fraction before SIRT of liver tumors. J Nucl Med 2018; 59: 1366-1372 DOI: 10.2967/jnumed.117.205203.
- 85 Hinrichs JB, Marquardt S, Wacker FK. et al. Coil embolization of reversed-curve hepatointestinal collaterals in radioembolization: potential solutions for a challenging task. Radiol Case Rep 2017; 12: 529-533 DOI: 10.1016/j.radcr.2017.04.006. (PMID: 28828119)
- 86 Barentsz MW, Vente MA, Lam MG. et al. Technical solutions to ensure safe yttrium-90 radioembolization in patients with initial extrahepatic deposition of (99m)technetium-albumin macroaggregates. Cardiovasc Intervent Radiol 2011; 34: 1074-1079 DOI: 10.1007/s00270-010-0088-4.
- 87 Dudeck O, Wilhelmsen S, Ulrich G. et al. Effectiveness of repeat angiographic assessment in patients designated for radioembolization using yttrium-90 microspheres with initial extrahepatic accumulation of technitium-99m macroaggregated albumin: a single center's experience. Cardiovasc Intervent Radiol 2012; 35: 1083-1093 DOI: 10.1007/s00270-011-0252-5.
- 88 Ulrich G, Dudeck O, Furth C. et al. Predictive value of intratumoral 99mTc-macroaggregated albumin uptake in patients with colorectal liver metastases scheduled for radioembolization with 90Y-microspheres. J Nucl Med 2013; 54: 516-522 DOI: 10.2967/jnumed.112.112508.
- 89 Thomas MA, Mahvash A, Abdelsalam M. et al. Planning dosimetry for (90) Y radioembolization with glass microspheres: Evaluating the fidelity of (99m) Tc-MAA and partition model predictions. Med Phys 2020; 47: 5333-5342 DOI: 10.1002/mp.14452.
- 90 Ho S, Lau WY, Leung TW. et al. Tumour-to-normal uptake ratio of 90Y microspheres in hepatic cancer assessed with 99Tcm macroaggregated albumin. Br J Radiol 1997; 70: 823-828 DOI: 10.1259/bjr.70.836.9486047.
- 91 Flamen P, Vanderlinden B, Delatte P. et al. Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with Yttrium-90 labeled resin microspheres. Phys Med Biol 2008; 53: 6591-6603 DOI: 10.1088/0031-9155/53/22/019.
- 92 Garin E, Guiu B, Edeline J. et al. Trans-arterial radioembolization dosimetry in 2022. Cardiovasc Intervent Radiol 2022; 45: 1608-1621 DOI: 10.1007/s00270-022-03215-x. (PMID: 35982334)
- 93 Brosch J, Gosewisch A, Kaiser L. et al. 3D image-based dosimetry for yttrium-90 radioembolization of hepatocellular carcinoma: Impact of imaging method on absorbed dose estimates. Phys Med 2020; 80: 317-326 DOI: 10.1016/j.ejmp.2020.11.016. (PMID: 33248338)
- 94 Seidensticker R, Seidensticker M, Damm R. et al. Hepatic toxicity after radioembolization of the liver using (90)Y-microspheres: sequential lobar versus whole liver approach. Cardiovasc Intervent Radiol 2012; 35: 1109-1118 DOI: 10.1007/s00270-011-0295-7. (PMID: 22037709)
- 95 Kappadath SC, Lopez BP. Single-compartment dose prescriptions for ablative (90)y-radioembolization segmentectomy. Life (Basel) 2023; 13: 1238 DOI: 10.3390/life13061238. (PMID: 37374021)
- 96 Lam M, Garin E, Maccauro M. et al. A global evaluation of advanced dosimetry in transarterial radioembolization of hepatocellular carcinoma with Yttrium-90: the TARGET study. Eur J Nucl Med Mol Imaging 2022; 49: 3340-3352 DOI: 10.1007/s00259-022-05774-0.
- 97 Hermann AL, Dieudonne A, Ronot M. et al. Relationship of tumor radiation-absorbed dose to survival and response in hepatocellular carcinoma treated with transarterial radioembolization with (90)Y in the SARAH study. Radiology 2020; 296: 673-684 DOI: 10.1148/radiol.2020191606.
- 98 Garin E, Tselikas L, Guiu B. et al. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol Hepatol 2021; 6: 17-29 DOI: 10.1016/S2468-1253(20)30290-9.
- 99 Sarwar A, Kudla A, Weinstein JL. et al. Yttrium-90 radioembolization using MIRD dosimetry with resin microspheres. Eur Radiol 2021; 31: 1316-1324 DOI: 10.1007/s00330-020-07231-8.
- 100 Eghbali M, Haber ZM, Srinivasa RN. et al. Complications of 90Y radioembolization treatment for liver tumors. Dig Dis Interv 2023; 7: 138-144
- 101 d'Abadie P, Walrand S, Goffette P. et al. Antireflux catheter improves tumor targeting in liver radioembolization with resin microspheres. Diagn Interv Radiol 2021; 27: 768-773 DOI: 10.5152/dir.2021.20785.
- 102 Piana PM, Bar V, Doyle L. et al. Early arterial stasis during resin-based yttrium-90 radioembolization: incidence and preliminary outcomes. HPB (Oxford) 2014; 16: 336-341 DOI: 10.1111/hpb.12135.
- 103 Paprottka KJ, Lehner S, Fendler WP. et al. Reduced periprocedural analgesia after replacement of water for injection with glucose 5% solution as the infusion medium for 90Y-resin microspheres. J Nucl Med 2016; 57: 1679-1684 DOI: 10.2967/jnumed.115.170779.
- 104 Yue J, Mauxion T, Reyes DK. et al. Comparison of quantitative Y-90 SPECT and non-time-of-flight PET imaging in post-therapy radioembolization of liver cancer. Med Phys 2016; 43: 5779 DOI: 10.1118/1.4962472. (PMID: 27782730)
- 105 Knesaurek K, Martinez RB, Ghesani M. Tumour-to-normal tissue (T/N) dosimetry ratios role in assessment of (90)Y selective internal radiation therapy (SIRT). Br J Radiol 2022; 95: 20210294 DOI: 10.1259/bjr.20210294. (PMID: 34762514)
- 106 Peterson JL, Vallow LA, Johnson DW. et al. Complications after 90Y microsphere radioembolization for unresectable hepatic tumors: an evaluation of 112 patients. Brachytherapy 2013; 12: 573-579 DOI: 10.1016/j.brachy.2013.05.008. (PMID: 23953810)
- 107 Pasciak AS, Bourgeois AC, McKinney JM. et al. Radioembolization and the dynamic role of (90)Y PET/CT. Front Oncol 2014; 4: 38 DOI: 10.3389/fonc.2014.00038. (PMID: 24579065)
- 108 Riaz A, Awais R, Salem R. Side effects of yttrium-90 radioembolization. Front Oncol 2014; 4: 198 DOI: 10.3389/fonc.2014.00198. (PMID: 25120955)
- 109 Sangro B, Martinez-Urbistondo D, Bester L. et al. Prevention and treatment of complications of selective internal radiation therapy: expert guidance and systematic review. Hepatology 2017; 66: 969-982 DOI: 10.1002/hep.29207. (PMID: 28407278)
- 110 Kennedy AS, Ball D, Cohen SJ. et al. Multicenter evaluation of the safety and efficacy of radioembolization in patients with unresectable colorectal liver metastases selected as candidates for (90)Y resin microspheres. J Gastrointest Oncol 2015; 6: 134-142 DOI: 10.3978/j.issn.2078-6891.2014.109.
- 111 Braat MN, van Erpecum KJ, Zonnenberg BA. et al. Radioembolization-induced liver disease: a systematic review. Eur J Gastroenterol Hepatol 2017; 29: 144-152 DOI: 10.1097/MEG.0000000000000772. (PMID: 27926660)
- 112 Gil-Alzugaray B, Chopitea A, Inarrairaegui M. et al. Prognostic factors and prevention of radioembolization-induced liver disease. Hepatology 2013; 57: 1078-1087 DOI: 10.1002/hep.26191. (PMID: 23225191)
- 113 Seidensticker M, Fabritius MP, Beller J. et al. Impact of pharmaceutical prophylaxis on radiation-induced liver disease following radioembolization. Cancers (Basel) 2021; 13: 1992 DOI: 10.3390/cancers13091992. (PMID: 33919073)
- 114 Atassi B, Bangash AK, Lewandowski RJ. et al. Biliary sequelae following radioembolization with Yttrium-90 microspheres. J Vasc Interv Radiol 2008; 19: 691-697 DOI: 10.1016/j.jvir.2008.01.003.
- 115 Cholapranee A, van Houten D, Deitrick G. et al. Risk of liver abscess formation in patients with prior biliary intervention following yttrium-90 radioembolization. Cardiovasc Intervent Radiol 2015; 38: 397-400 DOI: 10.1007/s00270-014-0947-5.
- 116 Gaba RC, Riaz A, Lewandowski RJ. et al. Safety of yttrium-90 microsphere radioembolization in patients with biliary obstruction. J Vasc Interv Radiol 2010; 21: 1213-1218 DOI: 10.1016/j.jvir.2010.04.013.
- 117 Camacho JC, Kokabi N, Xing M. et al. Modified response evaluation criteria in solid tumors and European Association for The Study of the Liver criteria using delayed-phase imaging at an early time point predict survival in patients with unresectable intrahepatic cholangiocarcinoma following yttrium-90 radioembolization. J Vasc Interv Radiol 2014; 25: 256-265 DOI: 10.1016/j.jvir.2013.10.056.
- 118 Aujay G, Etchegaray C, Blanc JF. et al. Comparison of MRI-based response criteria and radiomics for the prediction of early response to transarterial radioembolization in patients with hepatocellular carcinoma. Diagn Interv Imaging 2022; 103: 360-366 DOI: 10.1016/j.diii.2022.01.009.
- 119 Llovet JM, Lencioni R. mRECIST for HCC: performance and novel refinements. J Hepatol 2020; 72: 288-306 DOI: 10.1016/j.jhep.2019.09.026. (PMID: 31954493)
- 120 Shady W, Kishore S, Gavane S. et al. Metabolic tumor volume and total lesion glycolysis on FDG-PET/CT can predict overall survival after (90)Y radioembolization of colorectal liver metastases: a comparison with SUVmax, SUVpeak, and RECIST 1.0. Eur J Radiol 2016; 85: 1224-1231 DOI: 10.1016/j.ejrad.2016.03.029.
- 121 Sabet A, Meyer C, Aouf A. et al. Early post-treatment FDG PET predicts survival after 90Y microsphere radioembolization in liver-dominant metastatic colorectal cancer. Eur J Nucl Med Mol Imaging 2015; 42: 370-376 DOI: 10.1007/s00259-014-2935-z. (PMID: 25351506)
- 122 Filippi L, Bagni O, Notarianni E. et al. PET/CT with (18)F-choline or (18)F-FDG in hepatocellular carcinoma submitted to (90)Y-TARE: a real-world study. Biomedicines 2022; 10: 2996 DOI: 10.3390/biomedicines10112996. (PMID: 36428565)
- 123 Ingenerf M, Grawe F, Winkelmann M. et al. Neuroendocrine liver metastases treated using transarterial radioembolization: identification of prognostic parameters at 68Ga-DOTATATE PET/CT. Diagn Interv Imaging. 2023
- 124 Filippi L, Cianni R, Schillaci O. et al. Molecular and metabolic imaging of hepatic neuroendocrine tumors following radioembolization with 90Y-microspheres. Curr Med Imaging 2020; 16: 545-552 DOI: 10.2174/1573405615666190114150038.
- 125 Lam MG, Louie JD, Iagaru AH. et al. Safety of repeated yttrium-90 radioembolization. Cardiovasc Intervent Radiol 2013; 36: 1320-1328 DOI: 10.1007/s00270-013-0547-9. (PMID: 23354961)
- 126 Reed DK, Stewart WH, Banta T. et al. Repeated transarterial radioembolization adverse event and hepatotoxicity profile in cirrhotic patients with hepatocellular carcinoma: a single-center experience. Cureus 2022; 14: e23578 DOI: 10.7759/cureus.23578.
- 127 Masthoff M, Schindler P, Harders F. et al. Repeated radioembolization in advanced liver cancer. Ann Transl Med 2020; 8: 1055 DOI: 10.21037/atm-20-2658. (PMID: 33145274)
- 128 Hamoui N, Gates VL, Gonzalez J. et al. Radioembolization of renal cell carcinoma using yttrium-90 microspheres. J Vasc Interv Radiol 2013; 24: 298-300 DOI: 10.1016/j.jvir.2012.10.027. (PMID: 23369565)
- 129 Ricke J, Grosser O, Amthauer H. Y90-radioembolization of lung metastases via the bronchial artery: a report of 2 cases. Cardiovasc Intervent Radiol 2013; 36: 1664-1669 DOI: 10.1007/s00270-013-0690-3. (PMID: 23839007)