Subscribe to RSS
DOI: 10.1055/a-2184-5014
Photoinduced Metal-Free Arylboration of Unactivated Alkenes: Synthesis of Indoline Boronic Ester
This work was supported by the Scientific Fund of Sichuan Province (2019YJ0486), the Collaborative Fund of Luzhou Government and Southwest Medical University (2018LZXNYD-ZK23), the Opening Project of State Key Laboratory of Applied Organic Chemistry, Lanzhou University (202301), and the research fund of Southwest Medical University (No. 2020ZRQNA027, 2022QN003).
Abstract
The environmentally benign synthesis of indoline boronic esters, especially through a way of arylboration to alkenes, remains a challenge due to the use of transition metals or high-temperature conditions. We described a photoinduced metal-free arylboration of unactivated alkenes for the synthesis of indoline boronic esters and 1,2,3,4-tetrahydroquinoline boronic ester in good yields. This approach showed good compatibility and great efficiency for a range of allylphenylamines as well as alkylamine. Remarkably, this transformation also suggested that the base is not necessary for photosensitizer-free diboron reagent mediated mild generation of aryl radical. Furthermore, compared to previously reported methods, this approach is mild and environmentally benign.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2184-5014.
- Supporting Information
Publication History
Received: 18 August 2023
Accepted after revision: 29 September 2023
Accepted Manuscript online:
29 September 2023
Article published online:
03 November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 1b Dimitrijevic E, Taylor MS. ACS Catal. 2013; 3: 945
- 1c Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
- 1d Wen Y, Deng C, Xie J, Kang X. Molecules 2019; 24: 101
- 1e Tian Y.-M, Guo X.-N, Braunschweig H, Radius U, Marder TB. Chem. Rev. 2021; 121: 3561
- 1f Marotta A, Adams CE, Molloy JJ. Angew. Chem. Int. Ed. 2022; 61: e202207067
- 2a Volochnyuk DM, Gorlova AO, Grygorenko OO. Chem. Eur. J. 2021; 27: 15277
- 2b Grygorenko OO, Volochnyuk DM, Vashchenko BV. Eur. J. Org. Chem. 2021; 6478
- 2c Messner K, Vuong B, Tranmer GK. Pharmaceuticals 2022; 15: 264
- 3a Li D, Zhang H, Wang Y. Chem. Soc. Rev. 2013; 42: 8416
- 3b Kawai S, Saito S, Osumi S, Yamaguchi S, Foster AS, Spijker P, Meyer E. Nat. Commun. 2015; 6: 8098
- 3c Tanaka K, Gon M, Ito S, Ochi J, Chujo Y. Coord. Chem. Rev. 2022; 472: 214779
- 4a Wade CR, Broomsgrove AE. J, Aldridge S, Gabbaï FP. Chem. Rev. 2010; 110: 3958
- 4b Dai K, Zheng Y, Wei W. Adv. Funct. Mater. 2021; 31: 2008632
- 5a Yang K, Song Q. Org. Lett. 2016; 18: 5460
- 5b Zhang P, Xing M, Guan Q, Zhang J, Zhao Q, Zhang C. Org. Lett. 2019; 21: 8106
- 5c Bai X, Zheng W, Ge S, Lu Y. Org. Lett. 2022; 24: 3080
- 5d Zou C, Wu H, Ji Y, Zhang P, Cui H, Huang G, Zhang C. Chin. J. Chem. 2022; 40: 2437
- 6a Liang R.-X, Chen R.-Y, Zhong C, Zhu J.-W, Cao Z.-Y, Jia Y.-X. Org. Lett. 2020; 22: 3215
- 6b Wu F.-P, Gu X.-W, Geng H.-Q, Wu X.-F. Chem. Sci. 2023; 14: 2342
- 7a Logan KM, Sardini SR, White SD, Brown MK. J. Am. Chem. Soc. 2018; 140: 159
- 7b Chen L.-A, Lear AR, Gao P, Brown MK. Angew. Chem. Int. Ed. 2019; 58: 10956
- 7c Wang W, Ding C, Pang H, Yin G. Org. Lett. 2019; 21: 3968
- 7d Sardini SR, Lambright AL, Trammel GL, Omer HM, Liu P, Brown MK. J. Am. Chem. Soc. 2019; 141: 9391
- 7e Lambright AL, Liu Y, Joyner IA, Logan KM, Brown MK. Org. Lett. 2021; 23: 612
- 7f Meng X, Zhu L, Liang J, Shi H, Lv J, Wang M, Zhang L, Wang C. Org. Lett. 2022; 24: 6962
- 8a Smith KB, Brown MK. J. Am. Chem. Soc. 2017; 139: 7721
- 8b Sardini SR, Brown MK. J. Am. Chem. Soc. 2017; 139: 9823
- 8c Huang Y, Brown MK. Angew. Chem. Int. Ed. 2019; 58: 6048
- 8d Bergmann AM, Dorn SK, Smith KB, Logan KM, Brown MK. Angew. Chem. Int. Ed. 2019; 58: 1719
- 8e Simlandy AK, Lyu M.-Y, Brown MK. ACS Catal. 2021; 11: 12815
- 8f Dorn SK, Brown MK. ACS Catal. 2022; 12: 2058
- 8g Trammel GL, Kannangara PB, Vasko D, Datsenko O, Mykhailiuk P, Brown MK. Angew. Chem. Int. Ed. 2022; 61: e202212117
- 9 Semba K, Ohtagaki Y, Nakao Y. Org. Lett. 2016; 18: 3956
- 10 Vachhani DD, Butani HH, Sharma N, Bhoya UC, Shahb AK, Van der Eycken EV. Chem. Commun. 2015; 51: 14862
- 11 Wei F, Wei L, Zhou L, Tung C.-H, Ma Y, Xu Z. Asian J. Org. Chem. 2016; 5: 971
- 12 Kuang Z, Li B, Song Q. Chem. Commun. 2018; 54: 34
- 13a Kim H, Lee C. Angew. Chem. Int. Ed. 2012; 51: 12303
- 13b Nguyen J, D’Amato E, Narayanam J, Stephenson CR. J. Nat. Chem. 2012; 4: 854
- 13c Revo G, McCallum T, Morin M, Gagosz F, Barriault L. Angew. Chem. Int. Ed. 2013; 52: 13342
- 13d Devery JJ. III, Nguyen JD, Dai C, Stephenson CR. J. ACS Catal. 2016; 6: 5962
- 13e Yang C, Mehmood F, Lam TL, Chan SL.-F, Wu Y, Yeung C.-S, Guan X, Li K, Chung CY.-S, Zhou C.-Y, Zou T, Che C.-M. Chem. Sci. 2016; 7: 3123
- 13f Yang X, Liu W, Li L, Wei W, Li C.-J. Chem. Eur. J. 2016; 22: 15252
- 13g Michelet B, Deldaele C, Kajouj S, Moucheron C, Evano G. Org. Lett. 2017; 19: 3576
- 13h Caiuby CA. D, Ali A, Santana VT, de S Lucas FW, Santos MS, Corrêa AG, Nascimento OR, Jiang H, Paixão MW. RSC Adv. 2018; 8: 12879
- 13i Grübel M, Jandl C, Bach T. Synlett 2019; 30: 1825
- 13j Zidan M, McCallum T, Swann R, Barriault L. Org. Lett. 2020; 22: 8401
- 13k Li Y, Ying F, Fu T, Yang R, Dong Y, Lin L, Han Y, Liang D, Long X. Org. Biomol. Chem. 2020; 18: 5660
- 13l Bellotti P, Koy M, Gutheil C, Heuvel S, Glorius F. Chem. Sci. 2021; 12: 1810
- 13m Shon J.-H, Kim D, Rathnayake MD, Sittel S, Weaver J, Teets TS. Chem. Sci. 2021; 12: 4069
- 13n Smoleń S, Wincenciuk A, Drapała O, Gryko D. Synthesis 2021; 53: 1645
- 13o Marchese AD, Durant AG, Reid CM, Jans C, Arora R, Lautens M. J. Am. Chem. Soc. 2022; 144: 20554
- 13p Rezazadeh S, Martin MI, Kim RS, Yap GP. A, Rosenthal J, Watson DA. J. Am. Chem. Soc. 2023; 145: 4707
- 13q Li P.-S, Teng Q.-Q, Chen M. Chem. Commun. 2023; 59: 10620
- 14 Ye Y, Lin Y, Mao N.-D, Yang H, Ye X.-Y, Xie T. Org. Biomol. Chem. 2022; 20: 9255
- 15 Wu Y, Wu L, Zhang Z.-M, Xu B, Liu Y, Zhang J. Chem. Sci. 2022; 13: 2021
- 16a Cheng Y, Mück-Lichtenfeld C, Studer A. Angew. Chem. Int. Ed. 2018; 57: 16832
- 16b Yan G, Huang D, Wu X. Adv. Synth. Catal. 2018; 360: 1039
- 16c Tian Y.-M, Guo X.-N, Krummenacher I, Wu Z, Nitsch J, Braunschweig H, Radius U, Marder TB. J. Am. Chem. Soc. 2020; 142: 18231
- 16d Shu C, Noble A, Aggarwal VK. Nature 2020; 586: 714
- 16e Lai D, Ghosh S, Hajra A. Org. Biomol. Chem. 2021; 19: 4397
- 16f Zheng D, Jana K, Alasmary FA, Daniliuc CG, Studer A. Org. Lett. 2021; 23: 7688
- 16g Sarkar S, Wagulde S, Jia X, Gevorgyan V. Chem 2022; 8: 3096
- 16h Hazra S, Mahato S, Das KK, Panda S. Chem. Eur. J. 2022; 28: e202200556
- 16i Shiozuka A, Sekine K, Toki T, Kawashima K, Mori T, Kuninobu Y. Org. Lett. 2022; 24: 4281
- 16j Pan L, Deckert MM, Cooke MV, Bleeke AR, Laulhé S. Org. Lett. 2022; 24: 6466
- 16k Li B, Wang K, Yue H, Drichel A, Lin J, Su Z, Rueping M. Org. Lett. 2022; 24: 7434
- 16l Shang Z.-H, Pan J, Wang Z, Zhang Z.-X, Wu J. Eur. J. Org. Chem. 2023; 26: e202201379
- 16m Yamamoto Y, Ogawa A. Molecules 2023; 28: 787
- 17 Cheng Y, Mück-Lichtenfeld C, Studer A. J. Am. Chem. Soc. 2018; 140: 6221
- 18a Procedure for the Synthesis of Compound 2a To a Schlenk tube were added 1a (0.2 mmol) and bis(catecholato)diboron (61.8 mg, 1.3 equiv). The reaction vessel was evacuated and backfilled with argon for three times. Dimethylformamide (2.0 mL) was added. The reaction mixture was stirred under blue LEDs (30 W) irradiation at room temperature for 36 h. A solution of pinacol (95.0 mg, 4.0 equiv) in triethylamine (0.3 mL, 11.2 equiv) was added to the mixture. After 3 h, water (5 mL) was added, and the aqueous layer was extracted with ethyl acetate (5 × 3 mL). The combined organic layers were dried over magnesium sulfate, filtered, and concentrated. The product was purified by flash column chromatography on silica gel with PE/EtOAc = 10:1 as eluent to give product 2a in 84% yield.
- 18b Analytical Data of 2a 1H NMR (400 MHz, CDCl3): δ = 7.68 (d, J = 8.2 Hz, 2 H), 7.60 (d, J = 8.1 Hz, 1 H), 7.22 (d, J = 8.2 Hz, 2 H), 7.17 (t, J = 7.7 Hz, 1 H), 7.08 (d, J = 7.4 Hz, 1 H), 6.97 (t, J = 7.4 Hz, 1 H), 4.13 (t, J = 9.7 Hz, 1 H), 3.48 (dd, J = 10.4, 7.5 Hz, 1 H), 3.34–3.26 (m, 1 H), 2.36 (s, 3 H), 1.22 (s, 6 H), 1.19 (s, 6 H), 1.14 (dd, J = 16.2, 5.2 Hz, 1 H), 0.80 (dd, J = 16.1, 9.3 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 143.9, 141.4, 137.3, 134.1, 129.6, 127.7, 127.4, 124.0, 123.6, 114.7, 83.5, 57.6, 35.9, 24.9, 24.7, 21.6, 17.0 (br)* (*the carbon attached to boron is broadened due to quadrupolar relaxation). HRMS (ESI+): m/z calcd for C22H28BNO4S [M + H]+: 414.1905; found: 414.1902.
- 18c Analytical Data of 2g<1H NMR (400 MHz, CDCl3): δ = 7.64 (d, J = 8.2 Hz, 2 H), 7.55 (dd, J = 8.8, 4.5 Hz, 1 H), 7.23 (d, J = 8.1 Hz, 2 H), 6.87 (td, J = 8.8, 2.5 Hz, 1 H), 6.80 (dd, J = 8.2, 1.9 Hz, 1 H), 4.14 (dd, J = 10.7, 9.1 Hz, 1 H), 3.49 (dd, J = 10.8, 7.5 Hz, 1 H), 3.33–3.08 (m, 1 H), 2.38 (s, 3 H), 1.23 (s, 6 H), 1.21 (s, 6 H), 1.06 (dd, J = 16.2, 5.6 Hz, 1 H), 0.76 (dd, J = 16.2, 9.0 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 159.83 (d, J = 242.0 Hz), 144.1, 139.70 (d, J = 8.0 Hz), 137.44 (d, J = 2.0 Hz), 133.7, 129.7, 127.4, 116.01 (d, J = 8.5 Hz), 114.16 (d, J = 23.5 Hz), 111.46 (d, J = 24.0 Hz), 83.6, 58.0, 36.0 (d, J = 1.6 Hz), 24.9, 24.7, 21.6, 16.7 (br)* (*the carbon attached to boron is broadened due to quadrupolar relaxation). 19F NMR (376 MHz, CDCl3): δ = –119.33. HRMS (ESI+): m/z calcd for C22H27BFNO4S [M + H]+: 432.1811; found: 432.1810.
- 18d Analytical Data of 2r 1H NMR (400 MHz, CDCl3): δ = 7.64 (dd, J = 8.2, 6.4 Hz, 2 H), 7.53 (dd, J = 8.0, 4.7 Hz, 1 H), 7.16 (d, J = 8.0 Hz, 2 H), 7.12–7.08 (m, 1 H), 7.01 (t, J = 7.4 Hz, 1 H), 6.91– 6.85 (m, 1 H), 3.89 (td, J = 10.1, 2.7 Hz, 1 H), 3.71 (dd, J = 10.2, 7.0 Hz, 0.43 H), 3.56 (dd, J = 10.5, 7.0 Hz, 0.69 H), 3.38–3.33 (m, 0.69 H), 3.25 (dd, J = 15.6, 6.5 Hz, 0.43 H), 1.29 (tt, J = 14.6, 7.4 Hz, 1 H), 1.14 (d, J = 12.2 Hz, 7.5 H), 0.99 (d, J = 18.4 Hz, 4.4 H), 0.80 (d, J = 7.6 Hz, 1.3 H), 0.60 (d, J = 7.6 Hz, 1.9 H). 13C NMR (101 MHz, CDCl3): δ = 143.9, 143.8, 142.3, 142.1, 134.8, 134.7, 134.1, 133.9, 129.6, 127.7, 127.4, 127.4, 125.0, 124.3, 123.4, 123.0, 114.1, 83.4, 83.2, 55.0, 53.3, 42.0, 41.2, 24.9, 24.7, 24.6, 24.5, 21.6, 20.6 (br)* (*the carbon attached to boron is broadened due to quadrupolar relaxation), 12.3, 10.3. HRMS (ESI+): m/z calcd for C23H20BNO4S [M + H]+: 428.2061; found: 428.2061.