Subscribe to RSS
DOI: 10.1055/a-2188-1842
Skeletal Rearrangements Involving Cyclopropyl- and Alkene-Stabilized Silylium Ions
The work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC 2008/1-390540038). P.-W.L. thanks the China Scholarship Council for a predoctoral fellowship (2019–2023). M.O. is indebted to the Einstein Foundation Berlin for an endowed professorship.
Abstract
This Account summarizes the fascinating chemistry of cyclopropyl-stabilized silylium ions, which are readily available from vinylcyclopropanes (VCPs). Depending on the nucleophilic partner, these reactive intermediates undergo direct ring opening or ring expansion to nonclassical alkene-stabilized silylium ions. The latter can also be accessed by gold as well as proton electrophiles from silicon compounds containing unsaturated C–C bonds. All these reaction cascades can be terminated by C–H or C–C as well as Si–O bond formation. From this, a clearer picture of the versatility of these rather complex chemistries emerges.
1 Introduction
2 Skeletal Rearrangements of Vinylcyclopropanes Involving Cyclopropyl-Stabilized Silylium Ions
2.1 Termination by C–H Bond Formation
2.2 Termination by C–C Bond Formation
3 Related Bond Reorganizations Involving Alkene-Stabilized Silylium Ions
3.1 Initiation by Cationic Gold(I) Complexes
3.2 Initiation by Brønsted Acids
4 Conclusion
Keywords
β-silicon effect - bond reorganization - carbenium ions - ring expansion - silylium ions - skeletal rearrangements - vinylcyclopropanesPublication History
Received: 07 September 2023
Accepted after revision: 09 October 2023
Accepted Manuscript online:
09 October 2023
Article published online:
23 November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Grützmacher H, Marchand CM. Coord. Chem. Rev. 1997; 163: 287
- 2 Deasy CL. Chem. Rev. 1945; 36: 145
- 3 Roberts DD, McLaughlin MG. Adv. Synth. Catal. 2022; 364: 2307
- 4 Beļaunieks R, Puriņš M, Turks M. Synthesis 2020; 52: 2147
- 5a Siehl H.-U. In Recent Developments in Carbocation and Onium Ion Chemistry . Laali KK. ACS Symposium Series 965; American Chemical Society; Washington: 2007: 1
- 5b Lambert JB, Zhao Y, Emblidge RW, Salvador LA, Liu X, So J.-H, Chelius EC. Acc. Chem. Res. 1999; 32: 183
- 5c Lambert JB. Tetrahedron 1990; 46: 2677
- 6a Ibrahim MR, Jorgensen WL. J. Am. Chem. Soc. 1989; 111: 819
- 6b Lambert JB, Zhao Y. J. Am. Chem. Soc. 1996; 118: 7867
- 6c Lambert JB, Zhao Y, Wu H. J. Org. Chem. 1999; 64: 2729
- 6d Dabbagh HA, Zamani M, Fakhraee S. Res. Chem. Intermed. 2012; 38: 1551
- 6e Dabbagh HA, Zamani M, Fakhraee S. Res. Chem. Intermed. 2013; 39: 2011
- 7a Davidson ER, Shiner Jr. VJ. J. Am. Chem. Soc. 1986; 108: 3135
- 7b Sugawara M, Yoshida J. J. Org. Chem. 2000; 65: 3135
- 7c For more recent work, see: Creary X. Beilstein J. Org. Chem. 2019; 15: 1769 ; and cited references
- 8 Roy A, Bonetti V, Wang G, Wu Q, Klare HF. T, Oestreich M. Org. Lett. 2020; 22: 1213
- 9 Brown HC. The Nonclassical Ion Problem . Plenum Press; New York: 1977
- 10 Scholz F, Himmel D, Heinemann FW, Schleyer P. vR, Meyer K, Krossing I. Science 2013; 341: 62
- 11 Moss RA. J. Phys. Org. Chem. 2014; 27: 374
- 12 Steinberger H.-U, Müller T, Auner N, Maerker C, Schleyer P. vR. Angew. Chem. Int. Ed. Engl. 1997; 36: 626
- 13 Müller T, Bauch C, Ostermeier M, Bolte M, Auner N. J. Am. Chem. Soc. 2003; 125: 2158
- 14 de Meijere A. Angew. Chem. Int. Ed. Engl. 1979; 18: 809
- 15 Wang J, Blaszczyk SA, Li X, Tang W. Chem. Rev. 2021; 121: 110
- 16 Ganesh V, Chandrasekaran S. Synthesis 2016; 48: 4347
- 17 Jiao L, Yu Z.-X. J. Org. Chem. 2013; 78: 6842
- 18 Goldschmidt Z, Crammer B. Chem. Soc. Rev. 1988; 17: 229
- 19 Fleming I. Chem. Soc. Rev. 1981; 10: 83
- 20 Klare HF. T, Albers L, Süsse L, Keess S, Müller T, Oestreich M. Chem. Rev. 2021; 121: 5889
- 21 He T, Wang G, Bonetti V, Klare HF. T, Oestreich M. Angew. Chem. Int. Ed. 2020; 59: 12186
- 22 Schäfer A, Reißmann M, Schäfer A, Saak W, Haase D, Müller T. Angew. Chem. Int. Ed. 2011; 50: 12636
- 23 Schäfer A, Reißmann M, Jung S, Schäfer A, Saak W, Brendler E, Müller T. Organometallics 2013; 32: 4713
- 24 Labbow R, Reiß F, Schulz A, Villinger A. Organometallics 2014; 33: 3223
- 25 Omann L, Pudasaini B, Irran E, Klare HF. T, Baik M.-H, Oestreich M. Chem. Sci. 2018; 9: 5600
- 26 Wu Q, Qu Z.-W, Omann L, Irran E, Klare HF. T, Oestreich M. Angew. Chem. Int. Ed. 2018; 57: 9176
- 27 Long P.-W, He T, Oestreich M. Org. Lett. 2020; 22: 7383
- 28a Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
- 28b Zhao Y, Truhlar DG. Acc. Chem. Res. 2008; 41: 157
- 28c The solvent effect was taken into consideration using a polarizable continuum model (PCM) for both geometry optimizations and single-point energy calculations, see: Tomasi J, Persico M. Chem. Rev. 1994; 94: 2027
- 29 Heiden ZM, Lathem AP. Organometallics 2015; 34: 1818
- 30 Long P.-W, Oestreich M. Org. Lett. 2021; 23: 4834
- 31 He T, Wang G, Long P.-W, Kemper S, Irran E, Klare HF. T, Oestreich M. Chem. Sci. 2021; 12: 569
- 32 Chen Q.-A, Klare HF. T, Oestreich M. J. Am. Chem. Soc. 2016; 138: 7868
- 33 Wu Q, Irran E, Müller R, Kaupp M, Klare HF. T, Oestreich M. Science 2019; 365: 168
- 34 Allemann O, Duttwyler S, Romanato P, Baldridge KK, Siegel JS. Science 2011; 332: 574
- 35 He T, Klare HF. T, Oestreich M. ACS Catal. 2021; 11: 12186
- 36 Klare HF. T, Oestreich M. J. Am. Chem. Soc. 2021; 143: 15490
- 37 Long P.-W, Wang G, Klare HF. T, Oestreich M. ACS Catal. 2022; 12: 12310
- 38 Park S, Lee D. J. Am. Chem. Soc. 2006; 128: 10664
- 39 Horino Y, Luzung MR, Toste FD. J. Am. Chem. Soc. 2006; 128: 11364
- 40 Matsuda T, Kadowaki S, Yamaguchi Y, Murakami M. Chem. Commun. 2008; 2744
- 41 Matsuda T, Yamaguchi Y, Shigeno M, Sato S, Murakami M. Chem. Commun. 2011; 47: 8697
- 42 Zhou T, Xu L, Xia Y. Org. Lett. 2013; 15: 6074
- 43 Zhou H, Han JT, Nöthling N, Lindner MM, Jenniches J, Kühn C, Tsuji N, Zhang L, List B. J. Am. Chem. Soc. 2022; 144: 10156
- 44 Lambert JB, Zhao Y, Wu H, Tse WC, Kuhlmann B. J. Am. Chem. Soc. 1999; 121: 5001
For early computational and experimental data on β-silyl carbocations, see:
For more recent computational analyses, see: