Pneumologie 2024; 78(02): 93-99
DOI: 10.1055/a-2193-0966
Originalarbeit

4D-Elektromagnetische Navigationsbronchoskopie zur Diagnostik peripherer Rundherde

Ein Überblick und erste klinische Ergebnisse4D electromagnetic navigation bronchoscopy for the diagnosis of peripheral pulmonary nodulesAn overview and preliminary clinical results
Thomas Bitter
1   Pneumology and respiratory medicine, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Deutschland (Ringgold ID: RIN39726)
,
Tielko Seeba
1   Pneumology and respiratory medicine, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Deutschland (Ringgold ID: RIN39726)
,
Jörn Schroeder-Richter
1   Pneumology and respiratory medicine, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Deutschland (Ringgold ID: RIN39726)
,
Michael Fröhlich
1   Pneumology and respiratory medicine, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Deutschland (Ringgold ID: RIN39726)
,
Wissam Duaer
1   Pneumology and respiratory medicine, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Deutschland (Ringgold ID: RIN39726)
,
Wael Abidi
1   Pneumology and respiratory medicine, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Deutschland (Ringgold ID: RIN39726)
,
Markus Peter Kindermann
1   Pneumology and respiratory medicine, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Deutschland (Ringgold ID: RIN39726)
› Author Affiliations

Zusammenfassung

Hintergrund Die Abklärung peripherer Rundherde stellt eine besondere Herausforderung in der interventionellen Bronchologie dar, weswegen zunehmend Navigationssysteme wie die elektromagnetische Navigation (ENB) verwendet werden. Die 4D-ENB stellt eine innovative Weiterentwicklung der ENB dar. Durch In- und Exspirations-CT-Aufnahmen soll die atemabhängige CT-to-body-Divergenz überwunden und damit die Treffsicherheit peripherer Herde erhöht werden. Ziel dieser Arbeit ist eine Vorstellung des 4D-ENB-Verfahrens und die Präsentation erster klinischer Daten und Erfahrungen.

Methode Wir beschreiben retrospektiv die Resultate der ersten 9 konsekutiven Patienten mit PPN, die am Klinikum Braunschweig mittels 4D-ENB als unimodale Diagnostiktechnik untersucht wurden.

Resultate Von den ersten 9 mittels 4D-ENB untersuchten PPNs war eine erfolgreiche Navigation und Punktion des Herdes bei 8 Patienten (89%) möglich. Eine diagnostisch wegweisende Biopsie konnte bei 6 von 9 Patienten (67%) erreicht werden. Signifikante Komplikationen ergaben sich bei den Untersuchungen nicht.

Schlussfolgerung Unsere ersten Daten lassen die 4D-ENB als eine vielversprechende neue Alternative zur Abklärung von PPNs erscheinen. Um die diagnostische Ausbeute weiter zu verbessern, sollte die 4D-ENB aufgrund der fehlenden Echtzeitvisualisierung bevorzugt kombiniert mit radialem endobronchialem Ultraschall und/oder Fluoroskopie im Rahmen multimodaler Diagnostikkonzepte eingesetzt werden.

Abstract

Background The diagnostic of peripheral pulmonary nodules (PPN) is a particular challenge in interventional bronchology, which is why navigation systems such as electromagnetic navigation (ENB) are increasingly being used. The 4D-ENB represents the most current development of the ENB. It utilizes inspiratory and expiratory CT scans for mapping and thus helps compensate for respiratory movements-induced CT-to-body divergence. The aim of this work was to present the first clinical data and experiences using the 4D-ENB method for diagnosis of PPNs.

Methods We retrospectively describe the results of the first nine consecutive patient cases diagnosed at Klinikum Braunschweig using 4D-ENB in a unimodal diagnostic procedure.

Results Of the first 9 PPNs examined by 4D-ENB, navigation and puncture of the lesion was successful in 8 patients (89%). Diagnostic biopsy was could be carried out in six out of nine patients (67%). There were no significant procedure-related complications.

Conclusion Our preliminary data suggest that 4D-ENB is a promising new alternative for the diagnosis of PPNs. To further improve diagnostic yield, 4D-END, which lacks real-time visualization, should be embedded in a multimodal diagnostic procedure with rEBUS and/or fluoroscopy.



Publication History

Received: 28 August 2023

Accepted after revision: 15 October 2023

Article published online:
11 December 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 © Leitlinienprogramm Onkologie | S3-Leitlinie Lungenkarzinom-Version 2.0 | Prävention, Diagnostik, Therapie und Nachsorge des Lungenkarzinoms Leitlinie (Langversion). 2022
  • 2 Larici AR, Farchione A, Franchi P. et al. Lung nodules: Size still matters. Eur Respir Rev 2017; 26: 170025
  • 3 Mazzone PJ, Lam L. Evaluating the Patient With a Pulmonary Nodule. JAMA 2022; 327: 264
  • 4 Zhang J, Feng Q, Huang Y. et al. Updated Evaluation of Robotic- and Video-Assisted Thoracoscopic Lobectomy or Segmentectomy for Lung Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12: 853530
  • 5 Okamoto J, Kubokura H, Usuda J. Factors determining the choice of surgical procedure in elderly patients with non-small cell lung cancer. Ann Thorac Cardiovasc Surg 2016; 22: 131-138
  • 6 Park S, Yoon HY, Han Y. et al. Diagnostic yield of additional conventional transbronchial lung biopsy following radial endobronchial ultrasound lung biopsy for peripheral pulmonary lesions. Thorac Cancer 2020; 11: 1639-1646
  • 7 Clark RA, Grech P, Robinson A. et al. Limitations of fibre-optic bronchoscopy under fluoroscopy in the investigation of peripheral lung lesions. Br J Radiol 1978; 51: 432-436
  • 8 Stringfield JT, Markowitz DJ, Bentz RR. et al. The Effect of Tumor Size and Location on Diagnosis by Fiberoptic Bronchoscopy. Chest 1977; 72: 474-476
  • 9 Torrington KG, Kern JD. The Utility of Fiberoptic Bronchoscopy in the Evaluation of the Solitary Pulmonary Nodule. Chest 1993; 104: 1021-1024
  • 10 Rivera MP, Mehta AC, Wahidi MM. Establishing the Diagnosis of Lung Cancer. Chest 2013; 143: e142S-e165S
  • 11 Chen A, Chenna P, Loiselle A. et al. Radial probe endobronchial ultrasound for peripheral pulmonary lesions: A 5-year institutional experience. Ann Am Thorac Soc 2014; 11: 578-582
  • 12 Seijo LM. Electromagnetic navigation bronchoscopy: Clinical utility in the diagnosis of lung cancer. Lung Cancer: Targets and Therapy 2016; 7: 111-118
  • 13 Chen A, Pastis N, Furukawa B. et al. The Effect of Respiratory Motion on Pulmonary Nodule Location During Electromagnetic Navigation Bronchoscopy. Chest 2015; 147: 1275-1281
  • 14 Folch EE, Pritchett MA, Nead MA. et al. Electromagnetic Navigation Bronchoscopy for Peripheral Pulmonary Lesions: One-Year Results of the Prospective, Multicenter NAVIGATE Study. J Thorac Oncol 2019; 14: 445-458
  • 15 Flenaugh EL, Mohammed KH. Number 1 Initial Experience Using 4D Electromagnetic Navigation Bronchoscopy System With Tip Tracked Instruments For Localization of Peripheral Lung Nodules. The Internet Journal of Pulmonary Medicine 2016; 18
  • 16 Hedenstierna G, Rothen HU. Atelectasis Formation During Anesthesia: Causes and Measures to Prevent It. J Clin Monit Comput 2000; 16: 329-335
  • 17 Patrucco F, Daverio M, Airoldi C. et al. 4D Electromagnetic Navigation Bronchoscopy for the Sampling of Pulmonary Lesions: First European Real-Life Experience. Lung 2021; 199: 493-500
  • 18 Gex G, Pralong JA, Combescure C. et al. Diagnostic Yield and Safety of Electromagnetic Navigation Bronchoscopy for Lung Nodules: A Systematic Review and Meta-Analysis. Respiration 2014; 87: 165-176
  • 19 Bellinger C, Poon R, Dotson T. et al. Lesion characteristics affecting yield of electromagnetic navigational bronchoscopy. Respir Med 2021; 180
  • 20 Brown C, Ben-Or S, Walker P. et al. The Impact of Electromagnetic Navigational Bronchoscopy on a Multidisciplinary Thoracic Oncology Program. J Natl Compr Canc Netw 2016; 14: 181-184
  • 21 Ost DE, Ernst A, Lei X. et al. Diagnostic yield and complications of bronchoscopy for peripheral lung lesions: Results of the AQuIRE registry. Am J Respir Crit Care Med 2016; 193: 68-77
  • 22 Pritchett MA, Bhadra K, Mattingley JS. Electromagnetic Navigation Bronchoscopy with Tomosynthesis-based Visualization and Positional Correction: Three-dimensional Accuracy as Confirmed by Cone-Beam Computed Tomography. J Bronchology Interv Pulmonol 2021; 28: 10-20
  • 23 Brismar B, Hedenstierna G, Lundquist H. et al. Pulmonary Densities during Anesthesia with Muscular Relaxation – A Proposal of Atelectasis. Anesthesiology 1985; 62: 422-428
  • 24 Strandberg Å, Tokics L, Brismar B. et al. Atelectasis during anaesthesia and in the postoperative period. Acta Anaesthesiol Scand 1986; 30: 154-158
  • 25 Pritchett MA, Schampaert S, De Groot JAH. et al. Cone-Beam CT with Augmented Fluoroscopy Combined with Electromagnetic Navigation Bronchoscopy for Biopsy of Pulmonary Nodules. J Bronchology Interv Pulmonol 2018; 25: 274-282
  • 26 Chen AC, Gillespie CT. Robotic Endoscopic Airway Challenge: REACH Assessment. Ann Thorac Surg 2018; 106: 293-297
  • 27 Chaddha U, Kovacs SP, Manley C. et al. Robot-assisted bronchoscopy for pulmonary lesion diagnosis: Results from the initial multicenter experience. BMC Pulm Med 2019; 19
  • 28 Chen AC, Pastis NJ, Mahajan AK. et al. Robotic Bronchoscopy for Peripheral Pulmonary Lesions: A Multicenter Pilot and Feasibility Study (BENEFIT). Chest 2021; 159: 845-852
  • 29 Ortiz-Jaimes G, Reisenauer J. Real-World Impact of Robotic-Assisted Bronchoscopy on the Staging and Diagnosis of Lung Cancer: The Shape of Current and Potential Opportunities. Pragmat Obs Res 2023; 14: 75-94
  • 30 Ho E, Hedstrom G, Murgu S. Robotic bronchoscopy in diagnosing lung cancer – the evidence, tips and tricks: a clinical practice review. Ann Transl Med 2023; 11: 359