Subscribe to RSS
DOI: 10.1055/a-2193-0966
4D-Elektromagnetische Navigationsbronchoskopie zur Diagnostik peripherer Rundherde
Ein Überblick und erste klinische Ergebnisse4D electromagnetic navigation bronchoscopy for the diagnosis of peripheral pulmonary nodulesAn overview and preliminary clinical resultsZusammenfassung
Hintergrund Die Abklärung peripherer Rundherde stellt eine besondere Herausforderung in der interventionellen Bronchologie dar, weswegen zunehmend Navigationssysteme wie die elektromagnetische Navigation (ENB) verwendet werden. Die 4D-ENB stellt eine innovative Weiterentwicklung der ENB dar. Durch In- und Exspirations-CT-Aufnahmen soll die atemabhängige CT-to-body-Divergenz überwunden und damit die Treffsicherheit peripherer Herde erhöht werden. Ziel dieser Arbeit ist eine Vorstellung des 4D-ENB-Verfahrens und die Präsentation erster klinischer Daten und Erfahrungen.
Methode Wir beschreiben retrospektiv die Resultate der ersten 9 konsekutiven Patienten mit PPN, die am Klinikum Braunschweig mittels 4D-ENB als unimodale Diagnostiktechnik untersucht wurden.
Resultate Von den ersten 9 mittels 4D-ENB untersuchten PPNs war eine erfolgreiche Navigation und Punktion des Herdes bei 8 Patienten (89%) möglich. Eine diagnostisch wegweisende Biopsie konnte bei 6 von 9 Patienten (67%) erreicht werden. Signifikante Komplikationen ergaben sich bei den Untersuchungen nicht.
Schlussfolgerung Unsere ersten Daten lassen die 4D-ENB als eine vielversprechende neue Alternative zur Abklärung von PPNs erscheinen. Um die diagnostische Ausbeute weiter zu verbessern, sollte die 4D-ENB aufgrund der fehlenden Echtzeitvisualisierung bevorzugt kombiniert mit radialem endobronchialem Ultraschall und/oder Fluoroskopie im Rahmen multimodaler Diagnostikkonzepte eingesetzt werden.
Abstract
Background The diagnostic of peripheral pulmonary nodules (PPN) is a particular challenge in interventional bronchology, which is why navigation systems such as electromagnetic navigation (ENB) are increasingly being used. The 4D-ENB represents the most current development of the ENB. It utilizes inspiratory and expiratory CT scans for mapping and thus helps compensate for respiratory movements-induced CT-to-body divergence. The aim of this work was to present the first clinical data and experiences using the 4D-ENB method for diagnosis of PPNs.
Methods We retrospectively describe the results of the first nine consecutive patient cases diagnosed at Klinikum Braunschweig using 4D-ENB in a unimodal diagnostic procedure.
Results Of the first 9 PPNs examined by 4D-ENB, navigation and puncture of the lesion was successful in 8 patients (89%). Diagnostic biopsy was could be carried out in six out of nine patients (67%). There were no significant procedure-related complications.
Conclusion Our preliminary data suggest that 4D-ENB is a promising new alternative for the diagnosis of PPNs. To further improve diagnostic yield, 4D-END, which lacks real-time visualization, should be embedded in a multimodal diagnostic procedure with rEBUS and/or fluoroscopy.
Publication History
Received: 28 August 2023
Accepted after revision: 15 October 2023
Article published online:
11 December 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 © Leitlinienprogramm Onkologie | S3-Leitlinie Lungenkarzinom-Version 2.0 | Prävention, Diagnostik, Therapie und Nachsorge des Lungenkarzinoms Leitlinie (Langversion). 2022
- 2 Larici AR, Farchione A, Franchi P. et al. Lung nodules: Size still matters. Eur Respir Rev 2017; 26: 170025
- 3 Mazzone PJ, Lam L. Evaluating the Patient With a Pulmonary Nodule. JAMA 2022; 327: 264
- 4 Zhang J, Feng Q, Huang Y. et al. Updated Evaluation of Robotic- and Video-Assisted Thoracoscopic Lobectomy or Segmentectomy for Lung Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12: 853530
- 5 Okamoto J, Kubokura H, Usuda J. Factors determining the choice of surgical procedure in elderly patients with non-small cell lung cancer. Ann Thorac Cardiovasc Surg 2016; 22: 131-138
- 6 Park S, Yoon HY, Han Y. et al. Diagnostic yield of additional conventional transbronchial lung biopsy following radial endobronchial ultrasound lung biopsy for peripheral pulmonary lesions. Thorac Cancer 2020; 11: 1639-1646
- 7 Clark RA, Grech P, Robinson A. et al. Limitations of fibre-optic bronchoscopy under fluoroscopy in the investigation of peripheral lung lesions. Br J Radiol 1978; 51: 432-436
- 8 Stringfield JT, Markowitz DJ, Bentz RR. et al. The Effect of Tumor Size and Location on Diagnosis by Fiberoptic Bronchoscopy. Chest 1977; 72: 474-476
- 9 Torrington KG, Kern JD. The Utility of Fiberoptic Bronchoscopy in the Evaluation of the Solitary Pulmonary Nodule. Chest 1993; 104: 1021-1024
- 10 Rivera MP, Mehta AC, Wahidi MM. Establishing the Diagnosis of Lung Cancer. Chest 2013; 143: e142S-e165S
- 11 Chen A, Chenna P, Loiselle A. et al. Radial probe endobronchial ultrasound for peripheral pulmonary lesions: A 5-year institutional experience. Ann Am Thorac Soc 2014; 11: 578-582
- 12 Seijo LM. Electromagnetic navigation bronchoscopy: Clinical utility in the diagnosis of lung cancer. Lung Cancer: Targets and Therapy 2016; 7: 111-118
- 13 Chen A, Pastis N, Furukawa B. et al. The Effect of Respiratory Motion on Pulmonary Nodule Location During Electromagnetic Navigation Bronchoscopy. Chest 2015; 147: 1275-1281
- 14 Folch EE, Pritchett MA, Nead MA. et al. Electromagnetic Navigation Bronchoscopy for Peripheral Pulmonary Lesions: One-Year Results of the Prospective, Multicenter NAVIGATE Study. J Thorac Oncol 2019; 14: 445-458
- 15 Flenaugh EL, Mohammed KH. Number 1 Initial Experience Using 4D Electromagnetic Navigation Bronchoscopy System With Tip Tracked Instruments For Localization of Peripheral Lung Nodules. The Internet Journal of Pulmonary Medicine 2016; 18
- 16 Hedenstierna G, Rothen HU. Atelectasis Formation During Anesthesia: Causes and Measures to Prevent It. J Clin Monit Comput 2000; 16: 329-335
- 17 Patrucco F, Daverio M, Airoldi C. et al. 4D Electromagnetic Navigation Bronchoscopy for the Sampling of Pulmonary Lesions: First European Real-Life Experience. Lung 2021; 199: 493-500
- 18 Gex G, Pralong JA, Combescure C. et al. Diagnostic Yield and Safety of Electromagnetic Navigation Bronchoscopy for Lung Nodules: A Systematic Review and Meta-Analysis. Respiration 2014; 87: 165-176
- 19 Bellinger C, Poon R, Dotson T. et al. Lesion characteristics affecting yield of electromagnetic navigational bronchoscopy. Respir Med 2021; 180
- 20 Brown C, Ben-Or S, Walker P. et al. The Impact of Electromagnetic Navigational Bronchoscopy on a Multidisciplinary Thoracic Oncology Program. J Natl Compr Canc Netw 2016; 14: 181-184
- 21 Ost DE, Ernst A, Lei X. et al. Diagnostic yield and complications of bronchoscopy for peripheral lung lesions: Results of the AQuIRE registry. Am J Respir Crit Care Med 2016; 193: 68-77
- 22 Pritchett MA, Bhadra K, Mattingley JS. Electromagnetic Navigation Bronchoscopy with Tomosynthesis-based Visualization and Positional Correction: Three-dimensional Accuracy as Confirmed by Cone-Beam Computed Tomography. J Bronchology Interv Pulmonol 2021; 28: 10-20
- 23 Brismar B, Hedenstierna G, Lundquist H. et al. Pulmonary Densities during Anesthesia with Muscular Relaxation – A Proposal of Atelectasis. Anesthesiology 1985; 62: 422-428
- 24 Strandberg Å, Tokics L, Brismar B. et al. Atelectasis during anaesthesia and in the postoperative period. Acta Anaesthesiol Scand 1986; 30: 154-158
- 25 Pritchett MA, Schampaert S, De Groot JAH. et al. Cone-Beam CT with Augmented Fluoroscopy Combined with Electromagnetic Navigation Bronchoscopy for Biopsy of Pulmonary Nodules. J Bronchology Interv Pulmonol 2018; 25: 274-282
- 26 Chen AC, Gillespie CT. Robotic Endoscopic Airway Challenge: REACH Assessment. Ann Thorac Surg 2018; 106: 293-297
- 27 Chaddha U, Kovacs SP, Manley C. et al. Robot-assisted bronchoscopy for pulmonary lesion diagnosis: Results from the initial multicenter experience. BMC Pulm Med 2019; 19
- 28 Chen AC, Pastis NJ, Mahajan AK. et al. Robotic Bronchoscopy for Peripheral Pulmonary Lesions: A Multicenter Pilot and Feasibility Study (BENEFIT). Chest 2021; 159: 845-852
- 29 Ortiz-Jaimes G, Reisenauer J. Real-World Impact of Robotic-Assisted Bronchoscopy on the Staging and Diagnosis of Lung Cancer: The Shape of Current and Potential Opportunities. Pragmat Obs Res 2023; 14: 75-94
- 30 Ho E, Hedstrom G, Murgu S. Robotic bronchoscopy in diagnosing lung cancer – the evidence, tips and tricks: a clinical practice review. Ann Transl Med 2023; 11: 359