Subscribe to RSS
DOI: 10.1055/a-2198-3637
Synthesis of Alkyl Aryl Ethers by O-Arylation of Alcohols with Diaryliodonium Salts: Scope, Limitations, and Mechanism
This work was partially supported by the National Science Foundation (NSF; grant number 2154500). The NSF also provided instrument funding for the BioAnalytical Mass Spectrometry Facility at PSU under grant number 1828753.
This manuscript is dedicated to the memory of Professor Keith Fagnou.
Abstract
We describe the development of a C–O coupling reaction between aryl(2,4,6-trimethoxyphenyl)iodonium salts and aliphatic alcohols under weak base conditions. The scope of the reaction is presented, with 16 examples ranging in yield from moderate to high (54–96%). The limitations of the reaction are also presented. Mechanistic experiments reveal a complex network of reactions that include side reactions that generate arynes and oxidize the alcohol nucleophile.
Supporting Information
- Supporting information for this article is available online at https://doi.org/ 10.1055/a-2198-3637.
- Supporting Information
Publication History
Received: 01 September 2023
Accepted after revision: 25 October 2023
Accepted Manuscript online:
25 October 2023
Article published online:
21 November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 New address: Analog Devices, 14320 SW Jenkins Rd, Beaverton, OR 97005.
- 2a Enthaler S, Company A. Chem. Soc. Rev. 2011; 40: 4912
- 2b Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
- 2c Evano G, Wang JJ, Nitelet A. Org. Chem. Front. 2017; 4: 2480
- 3a March J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 4th ed. Wiley; New York: 1992: 641
- 3b Ando S, Tsuzaki M, Ishizuka T. J. Org. Chem. 2020; 85: 11181
- 4a Jones GO, Liu P, Houk KN, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 6205
- 4b Maiti D. Chem. Commun. 2011; 47: 8340
- 4c Guo Y, Fan X.-M, Nie M, Liu H.-W, Liao D.-H, Pan X.-D, Ji Y.-F. Eur. J. Org. Chem. 2015; 4744
- 4d Zheng Y, Zou W, Luo L, Chen J, Lin S, Sun Q. RSC Adv. 2015; 5: 66104
- 4e Chen Z, Jiang Y, Zhang L, Guo Y, Ma D. J. Am. Chem. Soc. 2019; 141: 3541
- 4f Ritwika R, Hartwig JF. Angew. Chem. Int. Ed. 2021; 60: 8203
- 4g Gowrisankar S, Sergeev A, Anbarasan P, Spannenbeig A, Neumann H, Beller M. J. Am. Chem. Soc. 2010; 132: 11592
- 4h Wu X, Fors BP, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 9943
- 4i Gowrisankar S, Neumann H, Beller M. Chem. Eur. J. 2012; 18: 2498
- 4j Cheung CW, Buchwald SL. Org. Lett. 2013; 15: 3998
- 4k Rangarajan TM, Singh R, Brahma R, Devi K, Singh RP, Singh RP, Prasad AK. Chem. Eur. J. 2014; 20: 14218
- 4l Sawatzky RS, Hargreaves BK. V, Stradiotto M. Eur. J. Org. Chem. 2016; 2444
- 4m Zhang H, Ruiz-Castillo P, Buchwald SL. Org. Lett. 2018; 20: 1580
- 4n Laffoon JD, Chan VS, Fickes MG, Kotecki B, Ickes AR, Henle J, Napolitano JG, Fanczyk TS, Dunn TB, Barnes DM, Haight AR, Henry RF, Shekhar S. ACS Catal. 2019; 9: 11691
- 4o Zhang H, Ruiz-Castillo P, Schuppe AW, Buchwald SL. Org. Lett. 2020; 22: 5369
- 5a Terrett JA, Cuthbertson JD, Shurtleff VW, MacMillan DW. C. Nature 2015; 524: 330
- 5b MacQueen PM, Tassone JP, Diaz C, Stradiotto M. J. Am. Chem. Soc. 2018; 140: 5023
- 5c Zhou Q.-Q, Lu F.-D, Liu D, Lu L.-Q, Xiao W.-J. Org. Chem. Front. 2018; 5: 3098
- 5d Zhao X, Deng C, Meng D, Ji H, Chen C, Song W, Zhao J. ACS Catal. 2020; 10: 15178
- 5e Morrison KM, McGuire RT, Ferguson MJ, Stradiotto M. ACS Catal. 2021; 11: 10878
- 5f Zhang H.-J, Chen L, Oderinde MS, Edwards JT, Kawamata Y, Baran PS. Angew. Chem. Int. Ed. 2021; 60: 20700
- 6a Beringer FM, Brierley A, Drexler M, Gindler EM, Lumpkin CC. J. Am. Chem. Soc. 1953; 75: 2708
- 6b Lubinkowski JJ, Knapczyk JW, Calderon JL, Petit LR, McEwen WE. J. Org. Chem. 1975; 40: 3010
- 6c Lindstedt E, Ghosh R, Olofsson B. Org. Lett. 2013; 15: 6070
- 6d Ghosh R, Lindstedt E, Jalalian N, Olofsson B. ChemistryOpen 2014; 3: 54
- 6e Sundalam SK, Stuart DR. J. Org. Chem. 2015; 80: 6456
- 6f Tolnai GL, Nilsson UJ, Olofsson B. Angew. Chem. Int. Ed. 2016; 55: 11226
- 6g Li J, Wang Z, Lu X, Lin J, Liu L, Zhao Y. Lett. Org. Chem. 2019; 16: 485
- 7a Hilton MC, Dolewski RD, McNally A. J. Am. Chem. Soc. 2016; 138: 13806
- 7b Anderson RG, Jett BM, NcNally A. Angew. Chem. Int. Ed. 2018; 57: 12514
- 8 Yoshida T, Honda Y, Morofuji T, Kano N. J. Org. Chem. 2022; 87: 7565
- 9 Yaroshevsky AA. Geochem. Int. 2006; 44: 48
- 10a Seidl TL, Sundalam SK, McCullough B, Stuart DR. J. Org. Chem. 2016; 81: 1998
- 10b Sandtorv AH, Stuart DR. Angew. Chem. Int. Ed. 2016; 55: 15812
- 10c Carreras V, Sandtorv AH, Stuart DR. J. Org. Chem. 2017; 82: 1279
- 10d Seidl TL, Stuart DR. J. Org. Chem. 2017; 82: 11765
- 10e Basu S, Sandtorv AH, Stuart DR. Beilstein J. Org. Chem. 2018; 14: 1034
- 10f Seidl TL, Moment A, Orella C, Vickery T, Stuart DR. Org. Synth. 2019; 96: 137
- 10g Gallagher RT, Basu S, Stuart DR. Adv. Synth. Catal. 2020; 362: 320
- 10h Pou S, Dodean RA, Frueh L, Liebman KM, Gallagher RT, Jin H, Jacobs RT, Nilsen A, Stuart DR, Doggett JS, Riscoe MK, Winter RW. Org. Process Res. Dev. 2021; 25: 1841
- 10i Nilova A, Metze B, Stuart DR. Org. Lett. 2021; 23: 4813
- 10j Metze BE, Bhattacharjee A, McCormick TM, Stuart DR. Synthesis 2022; 54: 4989
- 11 Stridfeldt E, Lindstedt E, Reitti M, Blid J, Norrby P.-O, Olofsson B. Chem. Eur. J. 2017; 23: 13249
- 12 Minegishi S, Kobayashi S, Mayr H. J. Am. Chem. Soc. 2004; 126: 5174
- 13a Lancer KM, Wiegand GH. J. Org. Chem. 1976; 41: 3360
- 13b Malmgren J, Santoro S, Jalalian N, Himo F, Olofsson B. Chem. Eur. J. 2013; 19: 10334
- 14 See the Supporting Information for further details.
- 15a Akiyama T, Imasaki Y, Kawanisi M. Chem. Lett. 1974; 229
- 15b Cadogan JI. G, Rowley AG, Sharp JT, Sledzinski B, Wilson NH. J. Chem. Soc., Perkin Trans. 1 1975; 1072
- 15c Sundalam S, Nilova A, Seidl TL, Stuart DR. Angew. Chem. Int. Ed. 2016; 55: 8431
- 15d Wang M, Huang Z. Org. Biomol. Chem. 2016; 14: 10185
- 15e Zhang Z, Wu X, Han J, Wu W, Wang L. Tetrahedron Lett. 2018; 59: 1737
- 15f Chen H, Han J, Wang L. Beilstein J. Org. Chem. 2018; 14: 354
- 15g Dohi T, Hayashi T, Ueda S, Shoji T, Komiyama K, Takeuchi H, Kita Y. Tetrahedron 2019; 75: 3617
- 15h Murai M, Ogita T, Takai K. Chem. Commun. 2019; 55: 2332
- 15i Nilova A, Sibald PA, Valente EJ, González-Montiel GA, Richardson HC, Brown KS, Cheong PH.-Y, Stuart DR. Chem. Eur. J. 2021; 27: 7168
- 15j Yuan H, Yin W, Hu J, Li Y. Nat. Commun. 2023; 14: 1841
- 15k Liu M, Jiang H, Tang J, Ye Z, Zhang F, Wu Y. Org. Lett. 2023; 25: 2777
- 15l Li X, Chen H, Liu X, Wang L, Han J. ChemistrySelect 2023; 8: e202301890
- 16 Willoughby PH, Niu D, Wang T, Haj MK, Cramer CJ, Hoye TR. J. Am. Chem. Soc. 2014; 136: 13657
- 17 Medina JM, Mackey JL, Garg NK, Houk KN. J. Am. Chem. Soc. 2014; 136: 15798
- 18 C–O Coupling; General Procedure The appropriate aryl(TMP)iodonium tosylate 1a–l (0.5 mmol, 1 equiv), Cs2CO3 (1.5 mmol, 3 equiv), alcohol 2a–f (0.75 mmol, 1.5 equiv), and toluene (2.5 mL) were added to an 8 mL vial, equipped with a magnetic stirrer bar and sealed with a cap. The vial was placed in a preheated aluminum block set to 55 °C, and the mixture was stirred vigorously for 2 h. The vial was removed from the block and the mixture was partitioned between CH2Cl2 and sat. aq NH4Cl. The resulting organic solution was concentrated under reduced pressure, and the residue was purified by flash column chromatography (silica gel, 0–3% EtOAc–hexane).
- 19 Benzyl 4-Chlorophenyl Ether (3a) White solid; yield 82.3 mg (75%). 1H NMR (400 MHz, CDCl3): δ = 7.42–7.32 (m, 5 H), 7.22 (d, J = 9.0 Hz, 2 H), 6.88 (d, J = 9.0 Hz, 2 H), 5.02 (s, 2 H). 13C {1H} NMR (101 MHz, CDCl3): δ = 157.4, 136.6, 129.4, 128.7, 128.1, 127.5, 125.8, 116.2, 70.3. 4-Nitrophenyl Pentyl Ether (3g) Yellow oil; yield: 102.8 mg (98%). 1H NMR (400 MHz, CDCl3): δ = 8.19–8.15 (m, 2 H), 6.96–6.92 (m, 2 H), 4.04 (t, J = 6.5 Hz, 2 H), 1.86–1.79 (m, 2 H), 1.49–1.35 (m, 4 H), 0.94 (t, J = 7.1 Hz, 3 H). 13C {1H} NMR (101 MHz, CDCl3): δ = 164.3, 141.2, 125.8, 114.4, 68.9, 28.7, 28.0, 22.4, 14.0. 4-Bromophenyl 2,2,2-Trifluoroethyl Ether (3m) Off-white solid; yield: 89.8 mg (70%). 1H NMR (400 MHz, CDCl3): δ = 7.41 (d, J = 9.0 Hz, 2 H), 6.82 (d, J = 8.9 Hz, 2 H), 4.31 (q, J = 8.1 Hz, 2 H). 13C {1 H} NMR (101 MHz, CDCl3): δ = 156.5, 132.6, 123.2 (q, J = 278.1 Hz), 116.8, 115.0, 66.0 (q, J = 35.8 Hz).
For examples of copper catalysis, see:
For examples of palladium catalysis, see: