Synthesis 2024; 56(21): 3277-3288
DOI: 10.1055/a-2202-2263
paper
Special Issue PSRC-10 (10th Pacific Symposium on Radical Chemistry)

Carboxamide-Accelerated Chemoselective Borylation of Iodoarenes under Photoirradiation

Yusei Nakashima
,
Michinori Sumimoto
,
Takashi Nishikata
We warmly thank Yamaguchi University, the Japan Science and Technology Agency (JST) SPRING Grant Number JPMJSP2111, Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (B) Grant Number 21H01939, JST CREST (JPMJCR18R4), and JST ASTEP (JPMJTM22DY). This work was also the result of using research equipment shared in a Ministry of Education, Culture, Sports, Science and Technology (MEXT) Project for promoting public utilization of advanced research infrastructure (Program for supporting construction of core facilities) Grant Number JPMXS0440400023.


Dedicated to Prof. Dennis Curran on the occasion of his 70th birthday.

Abstract

Borylation of haloarenes is one of the most important methodologies to synthesize borylated arenes. Generally, borylation of haloarenes occurs smoothly at the sterically less hindered para or meta position by the use of a transition metal catalyst or a photoredox catalyst or under basic conditions. This study reports on the ortho-specific and chemoselective borylation of ortho-iodoarene possessing carboxamide under visible-light irradiation. When a haloarene containing both C–I and C–X bonds is employed as a substrate, another C–X bond (not ortho) remains intact during the reaction. Mechanistic studies revealed that the key to the success of this reaction is the generation of a diboron-bridged five-membered ring as a transition state, in which the diboron-bridged five-membered ring and the benzene ring in the transition state are perpendicular to each other, owing to steric repulsion by the iodine atom at the ortho position. This chemoselectivity is suitable for the synthesis of borylated building blocks.

Supporting Information



Publication History

Received: 06 October 2023

Accepted after revision: 31 October 2023

Accepted Manuscript online:
31 October 2023

Article published online:
30 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Hall DG. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed. Wiley-VCH; Weinheim: 2011
    • 1b Suzuki A. Acc. Chem. Res. 1982; 15: 178
    • 1c Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 1d Miyaura N. Top. Curr. Chem. 2002; 219: 11
    • 1e Ishiyama T, Miyaura N. Chem. Rec. 2004; 3: 271
    • 1f Miyaura N. J. Organomet. Chem. 2002; 653: 54
    • 1g Norio M. Bull. Chem. Soc. Jpn. 2008; 81: 1535
  • 2 Das BC, Thapa P, Karki R, Schinke C, Das S, Kambhampati S, Banerjee SK, Veldhuizen PV, Verma A, Weiss LM, Evans T. Future Med. Chem. 2013; 5: 653
    • 3a Khotinsky E, Melamed M. Ber. Dtsch. Chem. Ges. 1909; 42: 3090
    • 3b Letsinger RL, Skoog IH. J. Org. Chem. 1953; 18: 895
    • 4a Ishiyama T, Murata M, Miyaura N. J. Org. Chem. 1995; 60: 7508
    • 4b Ishiyama T, Itoh Y, Kitano T, Miyaura N. Tetrahedron Lett. 1997; 38: 3447
    • 4c Murata M, Watanabe S, Masuda Y. J. Org. Chem. 1997; 62: 6458
    • 4d Baudoin O, Guénard D, Guéritte F. J. Org. Chem. 2000; 65: 9268
    • 4e Ishiyama T, Ishida K, Miyaura N. Tetrahedron 2001; 57: 9813
    • 4f Kleeberg C, Dang L, Lin Z, Marder TB. Angew. Chem. Int. Ed. 2009; 48: 5350 ; Angew. Chem. 2009, 121, 5454
    • 4g Zhu W, Ma D. Org. Lett. 2006; 8: 261
    • 4h Billingsley KL, Barder TE, Buchwald SL. Angew. Chem. Int. Ed. 2007; 46: 5359 ; Angew. Chem. 2007, 119, 5455
    • 4i Molander GA, Trice SL. J, Dreher SD. J. Am. Chem. Soc. 2010; 132: 17701
    • 4j Yoshida T, Ilies L, Nakamura E. ACS Catal. 2017; 7: 3199
    • 4k Bedford RB, Brenner PB, Carter E, Gallagher T, Murphy DM, Pye DR. Organometallics 2014; 33: 5940
  • 5 For a recent review, see: Wang M, Shi Z. Chem. Rev. 2020; 120: 7348
    • 6a Chen K, Zhang S, He P, Li P. Chem. Sci. 2016; 7: 3676
    • 6b Mfuh AM, Doyle JD, Chhetri B, Arman HD, Larionov OV. J. Am. Chem. Soc. 2016; 138: 2985
    • 6c Mfuh AM, Nguyen VT, Chhetri B, Burch JE, Doyle JD, Nesterov VN, Arman HD, Larionov OV. J. Am. Chem. Soc. 2016; 138: 8408
    • 6d Jiang M, Yang H, Fu H. Org. Lett. 2016; 18: 5248
    • 6e Chen K, Cheung MS, Lin Z, Li P. Org. Chem. Front. 2016; 3: 875
    • 6f Jin S, Dang HT, Haug GC, He R, Nguyen VD, Nguyen VT, Arman HD, Schanze KS, Larionov OV. J. Am. Chem. Soc. 2020; 142: 1603

      For recent reviews, see:
    • 7a Tian Y.-M, Guo X.-N, Braunschweig H, Radius U, Marder TB. Chem. Rev. 2021; 121: 3561
    • 7b Yadagiri B, Daipule K, Singh SP. Asian J. Org. Chem. 2021; 10: 7
    • 7c Lai D, Ghosh S, Hajra A. Org. Biomol. Chem. 2021; 19: 4397
    • 7d Nguyen VD, Nguyen VT, Jin S, Dang HT, Larionov OV. Tetrahedron 2019; 75: 584
  • 8 Liu W, Yang X, Gao Y, Li CJ. J. Am. Chem. Soc. 2017; 139: 8621
  • 9 Tian YM, Guo XN, Kuntze-Fechner MW, Krummenacher I, Braunschweig H, Radius U, Steffen A, Marder TB. J. Am. Chem. Soc. 2018; 140: 17612
  • 10 Photo-induced borylation of multi-halogenated arenes is difficult; see: Xu J, Cao J, Wu X, Wang H, Yang X, Tang X, Toh RW, Zhou R, Yeow EK. L, Wu J. J. Am. Chem. Soc. 2021; 143: 13266

    • For other recent borylations, see:
    • 11a Yamamoto E, Izumi K, Horita Y, Ito H. J. Am. Chem. Soc. 2012; 134: 19997
    • 11b Uematsu R, Yamamoto E, Maeda S, Ito H, Taketsugu T. J. Am. Chem. Soc. 2015; 137: 4090
    • 11c Yamamoto E, Ukigai S, Ito H. Chem. Sci. 2015; 6: 2943
    • 11d Zhang J, Wu H.-H, Zhang J. Eur. J. Org. Chem. 2013; 2013: 6263

    • For other chemoselective cross-couplings, see:
    • 11e Diehl CJ, Scattolin T, Englert U, Schoenebeck F. Angew. Chem. Int. Ed. 2019; 58: 211
    • 11f Wu S, Schiel F, Melchiorre P. Angew. Chem. Int. Ed. 2023; 62: e202306364
    • 12a Fawcett A, Pradeilles J, Wang Y, Mutsuga T, Myers EL, Aggarwal VK. Science 2017; 357: 283
    • 12b Cheng Y, Mück-Lichtenfeld C, Studer A. Angew. Chem. Int. Ed. 2018; 57: 16832
  • 13 Luo Y.-R. Comprehensive Handbook of Chemical Bond Energies. CRC Press; Boca Raton: 2007
  • 14 Marcos-Atanes D, Vidal C, Navo CD, Peccati F, Jiménez-Osés G, Mascareñas JL. Angew. Chem. Int. Ed. 2023; 62: e202214510
  • 15 Hoque ME, Hassan MM. M, Chattopadhyay B. J. Am. Chem. Soc. 2021; 143: 5022
  • 16 Bai S.-T, Bheeter CB, Reek JN. H. Angew. Chem. Int. Ed. 2019; 58: 13039
  • 17 Havlik SE, Simmons JM, Winton VJ, Johnson JB. J. Org. Chem. 2011; 76: 3588