Subscribe to RSS
DOI: 10.1055/a-2206-1420
Clinical, Anatomical, and Densitometric Changes following Dresden vs. Accelerated Corneal Cross-Linking in Progressive Keratoconus
Klinische, anatomische und densitometrische Veränderungen nach Dresdner vs. „accelerated“ kornealem Crosslinking bei Patienten mit progressivem KeratokonusAbstract
Background To compare clinical, anatomical, and densitometric changes following Dresden (DCXL) vs. accelerated (ACXL) corneal UVA cross-linking (CXL; Avedro KXL, Geuder, Heidelberg, Germany) in progressive keratoconus (KC).
Methods and Material In this retrospective study, we analyzed 20 patients following DCXL (3 mW/cm², 30 min, 5.4 J/cm²) and 44 patients following ACXL (9 mW/cm², 10 min, 5.4 J/cm²) between January 2016 and February 2020. Uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), central corneal thickness (CCT), steepest keratometry (Kmax), keratoconus index (KI), thinnest pachymetry (Pthin), and corneal densitometry (CD) were measured before and 3, 6, 12, and 24 months after CXL.
Results During the follow-up period, no changes in UCVA, BSCVA, Kmax, KI, or Pthin occurred. CCT significantly decreased 3 months after DCXL (p = 0.032) and ACXL (p = 0.006). At the 12- and 24-month follow-up, CCT remained decreased in the DCXL (p = 0.035, 0.036, respectively) but not in the ACXL group. At the 12-month follow-up, the reduction in CCT was significantly greater in DCXL compared to ACXL (p = 0.012). At the 3-, 6-, 12-, and 24-month follow-ups, we found a significant increase in the anterior stroma CD following DCXL (p = 0.019, 0.026, 0.049, 0.047, respectively) but not ACXL. The CD changes were localized in the central concentric zones (0.0 to 6.0 mm). No intra- or postoperative complications occurred.
Conclusion ACXL and DCXL effectively halted KC progression. ACXL proved to be a safe time-saving alternative to conventional DCXL. DCXL led to a reduction in CCT and an increment in the CD of the central anterior stroma during 24 months of follow-up.
Zusammenfassung
Hintergrund Vergleich klinischer, anatomischer und densitometrischer Veränderungen nach Dresdner Protokoll (DCXL) vs. „accelerated“ Protokoll (ACXL) des UVA-Crosslinkings der Hornhaut (CXL; Avedro KXL, Geuder, Heidelberg, Deutschland) bei progressivem Keratokonus (KC).
Material und Methoden In dieser retrospektiven Studie analysierten wir 20 Patienten nach DCXL (3 mW/cm², 30 min, 5,4 J/cm²) und 44 Patienten nach ACXL (9 mW/cm², 10 min, 5,4 J/cm²) zwischen Januar 2016 und Februar 2020. Die unkorrigierte Sehschärfe (UCVA), die bestkorrigierte Sehschärfe (BSCVA), die zentrale Hornhautdicke (CCT), der maximale Hornhautbrechwert (Kmax), der Keratokonusindex (KI), die dünnste Pachymetrie (Pthin) und die Hornhautdensitometrie (CD) wurden vor sowie 3, 6, 12 und 24 Monate nach dem CXL analysiert.
Ergebnisse Während der Nachbeobachtungszeit traten keine Veränderungen in UCVA, BSCVA, Kmax, KI oder Pthin auf. Die CCT nahm 3 Monate nach DCXL (p = 0,032) und ACXL (p = 0,006) signifikant ab. Bei der 12- und 24-monatigen Nachuntersuchung blieb die CCT in der DCXL- (p = 0,035 bzw. 0,036), nicht aber in der ACXL-Gruppe verringert. Bei der 3-, 6-, 12- und 24-monatigen Nachuntersuchung fanden wir eine signifikante Zunahme der anterioren Stroma-CD nach DCXL (p = 0,019, 0,026, 0,049 bzw. 0,047), nicht aber nach ACXL. Die CD-Veränderungen waren in den zentralen konzentrischen Zonen (0,0 bis 6,0 mm) lokalisiert. Es traten keine intra- oder postoperativen Komplikationen auf.
Schlussfolgerung ACXL und DCXL haben die Progression des KC erfolgreich aufgehalten. ACXL erwies sich als sichere, zeitsparende Alternative zur konventionellen DCXL. DCXL führte innerhalb von 24 Monaten postoperativ zu einer Verringerung der CCT und einer Zunahme der CD des zentralen anterioren Stromas.
Already known:
-
DCXL is a well-established treatment option to halt KC progression.
-
Based on the Bunsen-Roscoe law of reciprocity, ACXL is theoretically equally efficient to DCXL. However, its clinical equivalence remains unclear.
Newly described:
-
A significant decrease in CCT was witnessed in the DCXL and ACXL groups at the 3-month follow-up and persisted only in the DCXL group until the 24-month follow-up.
-
Total anterior stroma CD was significantly elevated only in the DCXL group. The CD elevations were localized in the central concentric zones (0.0 to 6.0 mm).
Schlüsselwörter
Crosslinking - Keratokonus - Hornhaut - Dresden-Protokoll - Accelerated Protokoll CrosslinkingPublication History
Received: 06 June 2023
Accepted: 31 October 2023
Article published online:
17 January 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Torres Netto EA, Al-Otaibi WM, Hafezi NL. et al. Prevalence of keratoconus in paediatric patients in Riyadh, Saudi Arabia. Br J Ophthalmol 2018; 102: 1436-1441 DOI: 10.1136/bjophthalmol-2017-311391.
- 2 Millodot M, Shneor E, Albou S. et al. Prevalence and associated factors of keratoconus in Jerusalem: a cross-sectional study. Ophthalmic Epidemiol 2011; 18: 91-97 DOI: 10.3109/09286586.2011.560747.
- 3 Gokhale NS. Epidemiology of keratoconus. Indian J Ophthalmol 2013; 61: 382-383 DOI: 10.4103/0301-4738.116054.
- 4 Romero-Jimenez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: a review. Cont Lens Anterior Eye 2010; 33: 157-166 DOI: 10.1016/j.clae.2010.04.006.
- 5 Godefrooij DA, de Wit GA, Uiterwaal CS. et al. Age-specific Incidence and Prevalence of Keratoconus: A Nationwide Registration Study. Am J Ophthalmol 2017; 175: 169-172 DOI: 10.1016/j.ajo.2016.12.015.
- 6 Olivares Jiménez JL, Guerrero Jurado JC, Bermudez Rodriguez FJ. et al. Keratoconus: age of onset and natural history. Optom Vis Sci 1997; 74: 147-151 DOI: 10.1097/00006324-199703000-00025.
- 7 Mas Tur V, MacGregor C, Jayaswal R. et al. A review of keratoconus: Diagnosis, pathophysiology, and genetics. Surv Ophthalmol 2017; 62: 770-783 DOI: 10.1016/j.survophthal.2017.06.009.
- 8 Wen D, Li Q, Song B. et al. Comparison of Standard Versus Accelerated Corneal Collagen Cross-Linking for Keratoconus: A Meta-Analysis. Invest Ophthalmol Vis Sci 2018; 59: 3920-3931 DOI: 10.1167/iovs.18-24656.
- 9 Raiskup F, Theuring A, Pillunat LE. et al. Corneal collagen crosslinking with riboflavin and ultraviolet-A light in progressive keratoconus: ten-year results. J Cataract Refract Surg 2015; 41: 41-46 DOI: 10.1016/j.jcrs.2014.09.033.
- 10 Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 2003; 135: 620-627 DOI: 10.1016/s0002-9394(02)02220-1.
- 11 Hashemi H, Seyedian MA, Miraftab M. et al. Corneal collagen cross-linking with riboflavin and ultraviolet a irradiation for keratoconus: long-term results. Ophthalmology 2013; 120: 1515-1520 DOI: 10.1016/j.ophtha.2013.01.012.
- 12 Choi M, Kim J, Kim EK. et al. Comparison of the Conventional Dresden Protocol and Accelerated Protocol With Higher Ultraviolet Intensity in Corneal Collagen Cross-Linking for Keratoconus. Cornea 2017; 36: 523-529 DOI: 10.1097/ico.0000000000001165.
- 13 Shajari M, Kolb CM, Agha B. et al. Comparison of standard and accelerated corneal cross-linking for the treatment of keratoconus: a meta-analysis. Acta Ophthalmol 2019; 97: e22-e35 DOI: 10.1111/aos.13814.
- 14 Ní Dhubhghaill S, Rozema JJ, Jongenelen S. et al. Normative values for corneal densitometry analysis by Scheimpflug optical assessment. Invest Ophthalmol Vis Sci 2014; 55: 162-168 DOI: 10.1167/iovs.13-13236.
- 15 Böhm M, Shajari M, Remy M. et al. Corneal densitometry after accelerated corneal collagen cross-linking in progressive keratoconus. Int Ophthalmol 2019; 39: 765-775 DOI: 10.1007/s10792-018-0876-4.
- 16 Sherif AM. Accelerated versus conventional corneal collagen cross-linking in the treatment of mild keratoconus: a comparative study. Clin Ophthalmol 2014; 8: 1435-1440 DOI: 10.2147/opth.S59840.
- 17 Waszczykowska A, Jurowski P. Two-year accelerated corneal cross-linking outcome in patients with progressive keratoconus. Biomed Res Int 2015; 2015: 325157 DOI: 10.1155/2015/325157.
- 18 Cummings AB, McQuaid R, Naughton S. et al. Optimizing Corneal Cross-Linking in the Treatment of Keratoconus: A Comparison of Outcomes After Standard- and High-Intensity Protocols. Cornea 2016; 35: 814-822 DOI: 10.1097/ico.0000000000000823.
- 19 Shetty R, Pahuja NK, Nuijts RM. et al. Current Protocols of Corneal Collagen Cross-Linking: Visual, Refractive, and Tomographic Outcomes. Am J Ophthalmol 2015; 160: 243-249 DOI: 10.1016/j.ajo.2015.05.019.
- 20 Pircher N, Lammer J, Holzer S. et al. Correlation between central stromal demarcation line depth and changes in K values after corneal cross-linking (CXL). Graefes Arch Clin Exp Ophthalmol 2018; 256: 759-764 DOI: 10.1007/s00417-018-3922-z.
- 21 Sadoughi MM, Einollahi B, Baradaran-Rafii A. et al. Accelerated versus conventional corneal collagen cross-linking in patients with keratoconus: an intrapatient comparative study. Int Ophthalmol 2018; 38: 67-74 DOI: 10.1007/s10792-016-0423-0.
- 22 McKay TB, Hjortdal J, Sejersen H. et al. Endocrine and Metabolic Pathways Linked to Keratoconus: Implications for the Role of Hormones in the Stromal Microenvironment. Sci Rep 2016; 6: 25534 DOI: 10.1038/srep25534.
- 23 Kamaev P, Friedman MD, Sherr E. et al. Photochemical kinetics of corneal cross-linking with riboflavin. Invest Ophthalmol Vis Sci 2012; 53: 2360-2367 DOI: 10.1167/iovs.11-9385.
- 24 Richoz O, Hammer A, Tabibian D. et al. The Biomechanical Effect of Corneal Collagen Cross-Linking (CXL) With Riboflavin and UV-A is Oxygen Dependent. Transl Vis Sci Technol 2013; 2: 6 DOI: 10.1167/tvst.2.7.6.
- 25 Dervenis N, Dervenis P, Dragoumis N. et al. Accelerated, Pulsed Collagen Cross-Linking versus the Dresden Protocol in Keratoconus: A Case Series. Med Princ Pract 2020; 29: 332-337 DOI: 10.1159/000505598.
- 26 Wernli J, Schumacher S, Spoerl E. et al. The efficacy of corneal cross-linking shows a sudden decrease with very high intensity UV light and short treatment time. Invest Ophthalmol Vis Sci 2013; 54: 1176-1180 DOI: 10.1167/iovs.12-11409.
- 27 Belin MW, Lim L, Rajpal RK. et al. Corneal Cross-Linking: Current USA Status: Report From the Cornea Society. Cornea 2018; 37: 1218-1225 DOI: 10.1097/ico.0000000000001707.
- 28 Greenstein SA, Shah VP, Fry KL. et al. Corneal thickness changes after corneal collagen crosslinking for keratoconus and corneal ectasia: one-year results. J Cataract Refract Surg 2011; 37: 691-700 DOI: 10.1016/j.jcrs.2010.10.052.
- 29 Brittingham S, Tappeiner C, Frueh BE. Corneal cross-linking in keratoconus using the standard and rapid treatment protocol: differences in demarcation line and 12-month outcomes. Invest Ophthalmol Vis Sci 2014; 55: 8371-8376 DOI: 10.1167/iovs.14-15444.
- 30 Wollensak G, Aurich H, Pham DT. et al. Hydration behavior of porcine cornea crosslinked with riboflavin and ultraviolet A. J Cataract Refract Surg 2007; 33: 516-521 DOI: 10.1016/j.jcrs.2006.11.015.
- 31 Greenstein SA, Fry KL, Bhatt J. et al. Natural history of corneal haze after collagen crosslinking for keratoconus and corneal ectasia: Scheimpflug and biomicroscopic analysis. J Cataract Refract Surg 2010; 36: 2105-2114 DOI: 10.1016/j.jcrs.2010.06.067.
- 32 Csorba A, Kránitz K, Dormán P. et al. Factors influencing haze formation and corneal flattening, and the impact of haze on visual acuity after conventional collagen cross-linking: a 12-month retrospective study. BMC Ophthalmol 2021; 21: 306 DOI: 10.1186/s12886-021-02066-3.
- 33 Mahdavi Fard A, Daei Sorkhabi R, Khazaei M. et al. The effects of collagen cross-linking on corneal density: a comparison between accelerated and conventional methods. Int Ophthalmol 2019; 39: 1559-1566 DOI: 10.1007/s10792-018-0961-8.
- 34 Pircher N, Pachala M, Prager F. et al. Changes in straylight and densitometry values after corneal collagen crosslinking. J Cataract Refract Surg 2015; 41: 1038-1043 DOI: 10.1016/j.jcrs.2014.07.043.
- 35 Mathews PM, De Rojas JO, Rapuano PB. et al. Correlation of Scheimpflug densitometry changes with clinical outcomes after corneal crosslinking. J Cataract Refract Surg 2018; 44: 993-1002 DOI: 10.1016/j.jcrs.2018.05.016.
- 36 Stojanovic A, Nitter TA. Correlation between ultraviolet radiation level and the incidence of late-onset corneal haze after photorefractive keratectomy. J Cataract Refract Surg 2001; 27: 404-410 DOI: 10.1016/s0886-3350(00)00742-2.
- 37 Koller T, Mrochen M, Seiler T. Complication and failure rates after corneal crosslinking. J Cataract Refract Surg 2009; 35: 1358-1362 DOI: 10.1016/j.jcrs.2009.03.035.
- 38 Goggin M, Kenna P, Lavery F. Haze following photorefractive and photoastigmatic refractive keratectomy with the Nidek EC5000 and the Summit ExciMed UV200. J Cataract Refract Surg 1997; 23: 50-53 DOI: 10.1016/s0886-3350(97)80150-2.
- 39 Razmjoo H, Rahimi B, Kharraji M. et al. Corneal haze and visual outcome after collagen crosslinking for keratoconus: A comparison between total epithelium off and partial epithelial removal methods. Adv Biomed Res 2014; 3: 221 DOI: 10.4103/2277-9175.145677.
- 40 Gutiérrez R, Lopez I, Villa-Collar C. et al. Corneal transparency after cross-linking for keratoconus: 1-year follow-up. J Refract Surg 2012; 28: 781-786 DOI: 10.3928/1081597x-20121011-06.
- 41 Raiskup F, Hoyer A, Spoerl E. Permanent corneal haze after riboflavin-UVA-induced cross-linking in keratoconus. J Refract Surg 2009; 25: S824-828 DOI: 10.3928/1081597x-20090813-12.
- 42 Badawi AE. Corneal Haze and Densitometry in Keratoconus after Collagen Cross-Linking by Three Different Protocols. J Curr Ophthalmol 2021; 33: 422-430 DOI: 10.4103/joco.joco_145_21.
- 43 Kortuem KU, Vounotrypidis E, Athanasiou A. et al. Differences in corneal clinical findings after standard and accelerated cross-linking in patients with progressive keratoconus. BMC Ophthalmol 2017; 17: 222 DOI: 10.1186/s12886-017-0610-4.
- 44 Kim BZ, Jordan CA, McGhee CN. et al. Natural history of corneal haze after corneal collagen crosslinking in keratoconus using Scheimpflug analysis. J Cataract Refract Surg 2016; 42: 1053-1059 DOI: 10.1016/j.jcrs.2016.04.019.
- 45 Akkaya Turhan S, Toker E. Changes in Corneal Density After Accelerated Corneal Collagen Cross-linking With Different Irradiation Intensities and Energy Exposures: 1-Year Follow-up. Cornea 2017; 36: 1331-1335 DOI: 10.1097/ico.0000000000001362.
- 46 Dhawan S, Rao K, Natrajan S. Complications of corneal collagen cross-linking. J Ophthalmol 2011; 2011: 869015 DOI: 10.1155/2011/869015.
- 47 Kim CY, Kim MK. Effect of the retention ring-assisted continuous application of riboflavin in pulsed-light accelerated corneal collagen cross-linking on the progression of keratoconus. BMC Ophthalmol 2019; 19: 72 DOI: 10.1186/s12886-019-1085-2.
- 48 Mazzotta C, Raiskup F, Hafezi F. et al. Long term results of accelerated 9 mW corneal crosslinking for early progressive keratoconus: the Siena Eye-Cross Study 2. Eye Vis (Lond) 2021; 8: 16 DOI: 10.1186/s40662-021-00240-8.
- 49 Baenninger PB, Bachmann LM, Wienecke L. et al. Effects and adverse events after CXL for keratoconus are independent of age: a 1-year follow-up study. Eye (Lond) 2014; 28: 691-695 DOI: 10.1038/eye.2014.56.
- 50 Croxatto JO, Tytiun AE, Argento CJ. Sequential in vivo confocal microscopy study of corneal wound healing after cross-linking in patients with keratoconus. J Refract Surg 2010; 26: 638-645 DOI: 10.3928/1081597x-20091111-01.
- 51 Wollensak G, Wilsch M, Spoerl E. et al. Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin/UVA. Cornea 2004; 23: 503-507 DOI: 10.1097/01.ico.0000105827.85025.7f.
- 52 Wollensak G, Spoerl E, Wilsch M. et al. Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment. Cornea 2004; 23: 43-49 DOI: 10.1097/00003226-200401000-00008.
- 53 Wollensak G, Mazzotta C, Kalinski T. et al. Limbal and conjunctival epithelium after corneal cross-linking using riboflavin and UVA. Cornea 2011; 30: 1448-1454 DOI: 10.1097/ICO.0b013e3182199d7e.
- 54 Mazzotta C, Hafezi F, Kymionis G. et al. In Vivo Confocal Microscopy after Corneal Collagen Crosslinking. Ocul Surf 2015; 13: 298-314 DOI: 10.1016/j.jtos.2015.04.007.
- 55 Mazzotta C, Balestrazzi A, Baiocchi S. et al. Stromal haze after combined riboflavin-UVA corneal collagen cross-linking in keratoconus: in vivo confocal microscopic evaluation. Clin Exp Ophthalmol 2007; 35: 580-582 DOI: 10.1111/j.1442-9071.2007.01536.x.