Synlett 2024; 35(13): 1572-1576
DOI: 10.1055/a-2216-4882
letter

Sulfur-Mediated ipso-Cyclization of 4-(p-Methoxyaryl)alk-1-ynes Leading to 3-Thiospiro[4.5]deca-1,6,9-trien-8-ones

Meng Han
,
Pingfan Li
This work is supported by the Natural Science Foundation of Beijing Municipality (2202040).


Abstract

A new method for the intramolecular electrophilic ipso-cyclization of alkynes with triflic anhydride-activated sulfoxides, followed by demethylation with triethylamine in one pot, is described for the synthesis of 3-thiospiro[4.5]-decatrienones in moderate to good yields. This method provides a facile strategy for assembling the sulfur-substituted spirocyclic compounds.

Supporting Information



Publication History

Received: 30 October 2023

Accepted after revision: 22 November 2023

Accepted Manuscript online:
22 November 2023

Article published online:
11 January 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Chawla AS, Jackson AH. Nat. Prod. Rep. 1989; 6: 55
    • 1b Yoneda K, Yamagata E, Nakanishi T, Nagashima T, Kawasaki I, Yoshida T, Mori H, Miura I. Phytochemistry 1984; 23: 2068
    • 1c Antunes EM, Copp BR, Davies-Coleman MT, Samaai T. Nat. Prod. Rep. 2005; 22: 62
    • 1d Jin Z. Nat. Prod. Rep. 2005; 22: 111
    • 1e Wu W.-T, Zhang L, You S.-L. Chem. Soc. Rev. 2016; 45: 1570
    • 2a D’Yakonov VA, Trapeznikova OA, de Meijere A, Dzhemilev UM. Chem. Rev. 2014; 114: 5775
    • 2b Kotha S, Mandal K. Tetrahedron Lett. 2004; 45: 1391
    • 3a Nakazaki A, Era T, Numada Y, Kobayashi S. Tetrahedron 2006; 62: 6264
    • 3b Posner GH, Hamill TG. J. Org. Chem 2002; 53: 6031
    • 4a Edrada RA, Stessman CC, Crews P. J. Nat. Prod. 2003; 66: 939
    • 4b Koswatta PB, Das J, Yousufuddin M, Lovely CJ. Eur. J. Org. Chem. 2015; 2603
  • 5 Díaz-Marrero AR, Porras G, Aragón Z, de la Rosa JM, Dorta E, Cueto M, D’Croz L, Mate J, Darias J. J. Nat. Prod. 2011; 74: 292
  • 6 Honda T, Shigehisa H. Org. Lett. 2006; 8: 657
  • 7 Nicolaou KC, Li A, Edmonds DJ. Angew. Chem., Int. Ed. Engl. 2006; 45: 7086
    • 8a Aparece MD, Vadola PA. Org. Lett. 2014; 16: 6008
    • 8b Chiba S, Zhang L, Lee J.-Y. J. Am. Chem. Soc. 2010; 132: 7266
    • 8c Ciufolini M, Braun N, Canesi S, Ousmer M, Chang J, Chai D. Synthesis 2007; 3759
    • 8d Lanza T, Minozzi M, Monesi A, Nanni D, Spagnolo P, Zanardi G. Adv. Synth. Catal. 2010; 352: 2275
    • 8e Pigge FC, Coniglio JJ, Dalvi R. J. Am. Chem. Soc. 2006; 128: 3498
    • 8f Pouységu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235
    • 8g Quideau S, Pouységu L, Deffieux D. Synlett 2008; 467
    • 8h Rousseaux S, García-Fortanet J, Del Aguila Sanchez MA, Buchwald SL. J. Am. Chem. Soc. 2011; 133: 9282
  • 9 Zhang X, Larock RC. J. Am. Chem. Soc. 2005; 127: 12230
    • 10a Appel TR, Yehia NA. M, Baumeister U, Hartung H, Kluge R, Ströhl D, Fanghänel E. Eur. J. Org. Chem. 2003; 47
    • 10b Gao P, Zhang W, Zhang Z. Org. Lett. 2016; 18: 5820
    • 10c Hua H.-L, He Y.-T, Qiu Y.-F, Li Y.-X, Song B, Gao P, Song X.-R, Guo D.-H, Liu X.-Y, Liang Y.-M. Chem. Eur. J. 2015; 21: 1468
    • 10d Huang K, Li J.-N, Qiu G, Xie W, Liu J.-B. RSC Adv 2019; 9: 33460
    • 10e Liang X.-W, Zheng C, You S.-L. Chem. Eur. J. 2016; 22: 11918
    • 10f Nair AM, Shinde AH, Kumar S, Volla CM. R. Chem. Commun. 2020; 56: 12367
    • 10g Reddy CR, Prajapti SK, Warudikar K, Ranjan R, Rao BB. Org. Biomol. Chem. 2017; 15: 3130
    • 10h Tang B.-X, Tang D.-J, Tang S, Yu Q.-F, Zhang Y.-H, Liang Y, Zhong P, Li J.-H. Org. Lett. 2008; 10: 1063
    • 10i Yu K, Kong X, Yang J, Li G, Xu B, Chen Q. J. Org. Chem. 2021; 86: 917
    • 10j Yuan J.-W, Mou C.-X, Zhang Y, Hu W.-Y, Yang L.-R, Xiao Y.-M, Mao P, Zhang S.-R, Qu L.-B. Org. Biomol. Chem. 2021; 19: 10348
  • 11 Tang B.-X, Zhang Y.-H, Song R.-J, Tang D.-J, Deng G.-B, Wang Z.-Q, Xie Y.-X, Xia Y.-Z, Li J.-H. J. Org. Chem. 2012; 77: 2837
  • 12 Ouyang X.-H, Song R.-J, Li Y, Liu B, Li J.-H. J. Org. Chem. 2014; 79: 4582
    • 13a Hua J, Fang Z, Bian M, Ma T, Yang M, Xu J, Liu C, He W, Zhu N, Yang Z, Guo K. ChemSusChem 2020; 13: 2053
    • 13b Sahoo H, Mandal A, Dana S, Baidya M. Adv. Synth. Catal. 2018; 360: 1099
    • 14a Mo K, Zhou X, Wu J, Zhao Y. Chem. Commun. 2022; 58: 1306
    • 14b Wang L.-J, Wang A.-Q, Xia Y, Wu X.-X, Liu X.-Y, Liang Y.-M. Chem. Commun. 2014; 50: 13998
    • 14c Zeng F.-L, Chen X.-L, Sun K, Zhu H.-L, Yuan X.-Y, Liu Y, Qu L.-B, Zhao Y.-F, Yu B. Org. Chem. Front. 2021; 8: 760
  • 15 Yang X.-H, Ouyang X.-H, Wei W.-T, Song R.-J, Li J.-H. Adv. Synth. Catal. 2015; 357: 1161
    • 16a De Martino G, Edler MC, La Regina G, Coluccia A, Barbera MC, Barrow D, Nicholson RI, Chiosis G, Brancale A, Hamel E, Artico M, Silvestri R. J. Med. Chem. 2006; 49: 947
    • 16b Jacob C. Nat. Prod. Rep. 2006; 23: 851
    • 16c Kondo T, Mitsudo T.-a. Chem. Rev. 2000; 100: 3205
    • 16d McReynolds MD, Dougherty JM, Hanson PR. Chem. Rev. 2004; 104: 2239
    • 16e Sizov AY, Kovregin AN, Ermolov AF. Russ. Chem. Rev. 2003; 72: 357
    • 16f Wang N, Saidhareddy P, Jiang X. Nat. Prod. Rep. 2020; 37: 246
    • 16g Xiao F, Chen H, Xie H, Chen S, Yang L, Deng G.-J. Org. Lett. 2014; 16: 50
    • 16h Xiao F, Chen S, Chen Y, Huang H, Deng G.-J. Chem. Commun. 2015; 51: 652
    • 17a Dénès F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
    • 17b Lee C.-F, Liu Y.-C, Badsara SS. Chem. Asian J. 2014; 9: 706
    • 17c Li Y, Wang M, Jiang X. ACS Catal. 2017; 7: 7587
    • 17d Liu H, Jiang X. Chem. Asian J. 2013; 8: 2546
    • 17e Šiaučiulis M, Sapmaz S, Pulis AP, Procter DJ. Chem. Sci. 2018; 9: 754
    • 18a Cui H, Wei W, Yang D, Zhang J, Xu Z, Wen J, Wang H. RSC Adv. 2015; 5: 84657
    • 18b Gao W.-C, Liu T, Cheng Y.-F, Chang H.-H, Li X, Zhou R, Wei W.-L, Qiao Y. J. Org. Chem. 2017; 82: 13459
    • 18c Qian P.-C, Liu Y, Song R.-J, Xiang J.-N, Li J.-H. Synlett 2015; 26: 1213
    • 18d Qiao Z, Shao C, Gao Y, Liang K, Yin H, Chen F.-X. Tetrahedron Lett. 2022; 100: 153875
    • 18e Wei W, Cui H, Yang D, Yue H, He C, Zhang Y, Wang H. Green Chem. 2017; 19: 5608
    • 18f Li X, Wang Y, Ouyang Y, Yu Z, Zhang B, Zhang J, Shi H, Zuilhof H, Du Y. J. Org. Chem. 2021; 86: 9490
  • 19 Zhang Z, He P, Du H, Xu J, Li P. J. Org. Chem. 2019; 84: 4517
  • 21 1-Phenyl-2-(phenylsulfanyl)spiro[4.5]deca-1,6,9-trien-8-one (3aa-1); Typical Procedure A flame-dried Schlenk tube was charged with alkyne 1a (0.15 mmol, 1.0 equiv) and PhS(=O)Me (2; 0.3 mmol, 2.0 equiv). The reactants were dissolved in CH2Cl2 (2 mL) under N2, and the solution was cooled to –78 °C (liquid N2–EtOAc bath), then 2-chloropyridine (28 μL, 0.3 mmol, 2.0 equiv) and Tf2O (50 μL, 0.3 mmol, 2.0 equiv) were added dropwise. The mixture was stirred at –78 °C for 0.5 h and then Et3N (0.199 mL, 1.5 mmol, 10.0 equiv) was added. When the reaction was complete, the mixture was extracted with CH2Cl2 (3 × 10 mL). The combined organic phase was dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel) to give a white solid; yield: 37.6 mg (74%); Rf = 0.2 (PE–EtOAc, 10:1). 1H NMR (400 MHz, CDCl3): δ = 7.46–7.42 (m, 2 H), 7.37–7.30 (m, 3 H), 7.28–7.24 (m, 3 H), 7.23–7.19 (m, 2 H), 6.97 (d, J = 10.1 Hz, 2 H), 6.25 (d, J = 10.1 Hz, 2 H), 2.66 (t, J = 7.1 Hz, 2 H), 2.19 (t, J = 7.2 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 185.2, 152.5, 139.8, 137.2, 134.2, 132.2, 132.0, 128.7, 128.3, 127.6, 127.5, 57.7, 35.5, 34.9. HRMS (ESI): m/z [M + H]+ calcd for C22H19OS: 331.1152; found: 331.1157.