Synlett, Table of Contents Synlett 2024; 35(13): 1572-1576DOI: 10.1055/a-2216-4882 letter Sulfur-Mediated ipso-Cyclization of 4-(p-Methoxyaryl)alk-1-ynes Leading to 3-Thiospiro[4.5]deca-1,6,9-trien-8-ones Meng Han , Pingfan Li ∗ Recommend Article Abstract Buy Article All articles of this category Abstract A new method for the intramolecular electrophilic ipso-cyclization of alkynes with triflic anhydride-activated sulfoxides, followed by demethylation with triethylamine in one pot, is described for the synthesis of 3-thiospiro[4.5]-decatrienones in moderate to good yields. This method provides a facile strategy for assembling the sulfur-substituted spirocyclic compounds. Key words Key wordsalkynes - sulfoxides - ipso-cyclization - spiro compounds - dearomatization Full Text References References and Notes 1a Chawla AS, Jackson AH. Nat. Prod. Rep. 1989; 6: 55 1b Yoneda K, Yamagata E, Nakanishi T, Nagashima T, Kawasaki I, Yoshida T, Mori H, Miura I. Phytochemistry 1984; 23: 2068 1c Antunes EM, Copp BR, Davies-Coleman MT, Samaai T. Nat. Prod. Rep. 2005; 22: 62 1d Jin Z. Nat. Prod. Rep. 2005; 22: 111 1e Wu W.-T, Zhang L, You S.-L. Chem. Soc. Rev. 2016; 45: 1570 2a D’Yakonov VA, Trapeznikova OA, de Meijere A, Dzhemilev UM. Chem. Rev. 2014; 114: 5775 2b Kotha S, Mandal K. Tetrahedron Lett. 2004; 45: 1391 3a Nakazaki A, Era T, Numada Y, Kobayashi S. Tetrahedron 2006; 62: 6264 3b Posner GH, Hamill TG. J. Org. Chem 2002; 53: 6031 4a Edrada RA, Stessman CC, Crews P. J. Nat. Prod. 2003; 66: 939 4b Koswatta PB, Das J, Yousufuddin M, Lovely CJ. Eur. J. Org. Chem. 2015; 2603 5 Díaz-Marrero AR, Porras G, Aragón Z, de la Rosa JM, Dorta E, Cueto M, D’Croz L, Mate J, Darias J. J. Nat. Prod. 2011; 74: 292 6 Honda T, Shigehisa H. Org. Lett. 2006; 8: 657 7 Nicolaou KC, Li A, Edmonds DJ. Angew. Chem., Int. Ed. Engl. 2006; 45: 7086 8a Aparece MD, Vadola PA. Org. Lett. 2014; 16: 6008 8b Chiba S, Zhang L, Lee J.-Y. J. Am. Chem. Soc. 2010; 132: 7266 8c Ciufolini M, Braun N, Canesi S, Ousmer M, Chang J, Chai D. Synthesis 2007; 3759 8d Lanza T, Minozzi M, Monesi A, Nanni D, Spagnolo P, Zanardi G. Adv. Synth. Catal. 2010; 352: 2275 8e Pigge FC, Coniglio JJ, Dalvi R. J. Am. Chem. Soc. 2006; 128: 3498 8f Pouységu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235 8g Quideau S, Pouységu L, Deffieux D. Synlett 2008; 467 8h Rousseaux S, García-Fortanet J, Del Aguila Sanchez MA, Buchwald SL. J. Am. Chem. Soc. 2011; 133: 9282 9 Zhang X, Larock RC. J. Am. Chem. Soc. 2005; 127: 12230 10a Appel TR, Yehia NA. M, Baumeister U, Hartung H, Kluge R, Ströhl D, Fanghänel E. Eur. J. Org. Chem. 2003; 47 10b Gao P, Zhang W, Zhang Z. Org. Lett. 2016; 18: 5820 10c Hua H.-L, He Y.-T, Qiu Y.-F, Li Y.-X, Song B, Gao P, Song X.-R, Guo D.-H, Liu X.-Y, Liang Y.-M. Chem. Eur. J. 2015; 21: 1468 10d Huang K, Li J.-N, Qiu G, Xie W, Liu J.-B. RSC Adv 2019; 9: 33460 10e Liang X.-W, Zheng C, You S.-L. Chem. Eur. J. 2016; 22: 11918 10f Nair AM, Shinde AH, Kumar S, Volla CM. R. Chem. Commun. 2020; 56: 12367 10g Reddy CR, Prajapti SK, Warudikar K, Ranjan R, Rao BB. Org. Biomol. Chem. 2017; 15: 3130 10h Tang B.-X, Tang D.-J, Tang S, Yu Q.-F, Zhang Y.-H, Liang Y, Zhong P, Li J.-H. Org. Lett. 2008; 10: 1063 10i Yu K, Kong X, Yang J, Li G, Xu B, Chen Q. J. Org. Chem. 2021; 86: 917 10j Yuan J.-W, Mou C.-X, Zhang Y, Hu W.-Y, Yang L.-R, Xiao Y.-M, Mao P, Zhang S.-R, Qu L.-B. Org. Biomol. Chem. 2021; 19: 10348 11 Tang B.-X, Zhang Y.-H, Song R.-J, Tang D.-J, Deng G.-B, Wang Z.-Q, Xie Y.-X, Xia Y.-Z, Li J.-H. J. Org. Chem. 2012; 77: 2837 12 Ouyang X.-H, Song R.-J, Li Y, Liu B, Li J.-H. J. Org. Chem. 2014; 79: 4582 13a Hua J, Fang Z, Bian M, Ma T, Yang M, Xu J, Liu C, He W, Zhu N, Yang Z, Guo K. ChemSusChem 2020; 13: 2053 13b Sahoo H, Mandal A, Dana S, Baidya M. Adv. Synth. Catal. 2018; 360: 1099 14a Mo K, Zhou X, Wu J, Zhao Y. Chem. Commun. 2022; 58: 1306 14b Wang L.-J, Wang A.-Q, Xia Y, Wu X.-X, Liu X.-Y, Liang Y.-M. Chem. Commun. 2014; 50: 13998 14c Zeng F.-L, Chen X.-L, Sun K, Zhu H.-L, Yuan X.-Y, Liu Y, Qu L.-B, Zhao Y.-F, Yu B. Org. Chem. Front. 2021; 8: 760 15 Yang X.-H, Ouyang X.-H, Wei W.-T, Song R.-J, Li J.-H. Adv. Synth. Catal. 2015; 357: 1161 16a De Martino G, Edler MC, La Regina G, Coluccia A, Barbera MC, Barrow D, Nicholson RI, Chiosis G, Brancale A, Hamel E, Artico M, Silvestri R. J. Med. Chem. 2006; 49: 947 16b Jacob C. Nat. Prod. Rep. 2006; 23: 851 16c Kondo T, Mitsudo T.-a. Chem. Rev. 2000; 100: 3205 16d McReynolds MD, Dougherty JM, Hanson PR. Chem. Rev. 2004; 104: 2239 16e Sizov AY, Kovregin AN, Ermolov AF. Russ. Chem. Rev. 2003; 72: 357 16f Wang N, Saidhareddy P, Jiang X. Nat. Prod. Rep. 2020; 37: 246 16g Xiao F, Chen H, Xie H, Chen S, Yang L, Deng G.-J. Org. Lett. 2014; 16: 50 16h Xiao F, Chen S, Chen Y, Huang H, Deng G.-J. Chem. Commun. 2015; 51: 652 17a Dénès F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587 17b Lee C.-F, Liu Y.-C, Badsara SS. Chem. Asian J. 2014; 9: 706 17c Li Y, Wang M, Jiang X. ACS Catal. 2017; 7: 7587 17d Liu H, Jiang X. Chem. Asian J. 2013; 8: 2546 17e Šiaučiulis M, Sapmaz S, Pulis AP, Procter DJ. Chem. Sci. 2018; 9: 754 18a Cui H, Wei W, Yang D, Zhang J, Xu Z, Wen J, Wang H. RSC Adv. 2015; 5: 84657 18b Gao W.-C, Liu T, Cheng Y.-F, Chang H.-H, Li X, Zhou R, Wei W.-L, Qiao Y. J. Org. Chem. 2017; 82: 13459 18c Qian P.-C, Liu Y, Song R.-J, Xiang J.-N, Li J.-H. Synlett 2015; 26: 1213 18d Qiao Z, Shao C, Gao Y, Liang K, Yin H, Chen F.-X. Tetrahedron Lett. 2022; 100: 153875 18e Wei W, Cui H, Yang D, Yue H, He C, Zhang Y, Wang H. Green Chem. 2017; 19: 5608 18f Li X, Wang Y, Ouyang Y, Yu Z, Zhang B, Zhang J, Shi H, Zuilhof H, Du Y. J. Org. Chem. 2021; 86: 9490 19 Zhang Z, He P, Du H, Xu J, Li P. J. Org. Chem. 2019; 84: 4517 20a An S, Zhang Z, Li P. Eur. J. Org. Chem. 2021; 3059 20b Li P. Synlett 2021; 32: 1275 20c Pan T, Li P. J. Org. Chem. 2023; 88: 7564 21 1-Phenyl-2-(phenylsulfanyl)spiro[4.5]deca-1,6,9-trien-8-one (3aa-1); Typical Procedure A flame-dried Schlenk tube was charged with alkyne 1a (0.15 mmol, 1.0 equiv) and PhS(=O)Me (2; 0.3 mmol, 2.0 equiv). The reactants were dissolved in CH2Cl2 (2 mL) under N2, and the solution was cooled to –78 °C (liquid N2–EtOAc bath), then 2-chloropyridine (28 μL, 0.3 mmol, 2.0 equiv) and Tf2O (50 μL, 0.3 mmol, 2.0 equiv) were added dropwise. The mixture was stirred at –78 °C for 0.5 h and then Et3N (0.199 mL, 1.5 mmol, 10.0 equiv) was added. When the reaction was complete, the mixture was extracted with CH2Cl2 (3 × 10 mL). The combined organic phase was dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel) to give a white solid; yield: 37.6 mg (74%); Rf = 0.2 (PE–EtOAc, 10:1). 1H NMR (400 MHz, CDCl3): δ = 7.46–7.42 (m, 2 H), 7.37–7.30 (m, 3 H), 7.28–7.24 (m, 3 H), 7.23–7.19 (m, 2 H), 6.97 (d, J = 10.1 Hz, 2 H), 6.25 (d, J = 10.1 Hz, 2 H), 2.66 (t, J = 7.1 Hz, 2 H), 2.19 (t, J = 7.2 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 185.2, 152.5, 139.8, 137.2, 134.2, 132.2, 132.0, 128.7, 128.3, 127.6, 127.5, 57.7, 35.5, 34.9. HRMS (ESI): m/z [M + H]+ calcd for C22H19OS: 331.1152; found: 331.1157. Supplementary Material Supplementary Material Supporting Information