Subscribe to RSS
DOI: 10.1055/a-2218-9048
One-Flow Operation via 4-Bromopyridine Enables Flash Synthesis of AChE Inhibitor
This work was supported by JSPS KAKENHI Grant Numbers, JP20K15276 (Grant-in-Aid for Early-Career Scientists), JP20KK0121 (Fostering Joint International Research (B)), JP21H01936 (Grant-in-Aid for Scientific Research (B)), JP21H01706 (Grant-in-Aid for Scientific Research (B)), and JP21H05080 (Grant-in-Aid for Transformative Research Areas (B)). This work was also partially supported by AMED (JP21ak0101156), the Core Research for Evolutional Science and Technology (CREST, JPMJCR18R1), New Energy and Industrial Technology Development Organization (NEDO, P19004), the Japan Keirin Autorace Foundation, and the Ogasawara Foundation for the Promotion of Science and Engineering.
Abstract
4-Bromopyridine is a building block that can be converted into valuable compounds, but due to its low stability, it is commercially available in the form of hydrochloride salt. Therefore, the hydrochloride salt is usually desalted with a basic aqueous solution and dried before organic reaction. In this study, to simplify the preparation and reaction procedure of 4-bromopyridine, multiple operations, desalting with a base, separation of the aqueous layer, and subsequent halogen–lithium exchange reaction were integrated into a single flow reaction. The reaction sequence was completed within 20 seconds and the yields were higher than the conventional methods. This is because the subsequent reaction can be performed immediately after the generation of 4-bromopyridine, which is unstable under ambient conditions.
Key words
one flow operation - flow microreactors - flash chemistry - integrated flow reactions - bromopyridine hydrochloride - liquid-liquid separate membrane - AChE inhibitorsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2218-9048.
- Supporting Information
Publication History
Received: 14 October 2023
Accepted after revision: 28 November 2023
Accepted Manuscript online:
28 November 2023
Article published online:
04 January 2024
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Sheldon RA. Chem. Soc. Rev. 2012; 41: 1437
- 2a Trost BM. Science 1991; 254: 1471
- 2b Trost BM. Angew. Chem., Int. Ed. Engl. 1995; 34: 259
- 2c Newhouse T, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
- 3a Wender PA, Verma VA, Paxton TJ, Pillow TH. Acc. Chem. Res. 2008; 41: 40
- 3b Wender PA. Tetrahedron 2013; 69: 7529
- 5 Li C.-J, Trost BM. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 13197
- 6a Matsumoto Y, Tsuzuki R, Matsuhisa A, Takayama K, Yoden T, Uchida W, Asano M, Fujita S, Yanagisawa I, Fujikura T. Chem. Pharm. Bull. 1996; 44: 103
- 6b Choi-Sledeski YM, McGarry DG, Green DM, Mason HJ, Becker MR, Davis RS, Ewing WR, Dankulich WP, Manetta VE, Morris RL, Spada AP, Cheney DL, Brown KD, Colussi DJ, Chu V, Heran CL, Morgan SR, Bentley RG, Leadley RJ, Maignan S, Guilloteau JP, Dunwiddie CT, Pauls HW. J. Med. Chem. 1999; 42: 3572
- 6c Russo O, Alami M, Brion J.-D, Sicsic S, Berque-Bestel I. Tetrahedron Lett. 2004; 45: 7069
- 7a Savanor PM, Jathi K, Bhat SK, Tantry RN. Res. J. Chem. Sci. 2013; 3: 38
- 7b Dutta B, Dey A, Sinha C, Ray PP, Mir MH. Dalton Trans. 2019; 48: 11259
- 7c Heitz W, Rehder A, Nießner N. Makromol. Chem. 1991; 12: 637
- 8a Mayer N, Schweiger M, Fuchs E, Migglautsch AK, Doler C, Grabner GF, Romauch M, Melcher M.-C, Zechner R, Zimmermann R, Breinbauer R. Bioorg. Med. Chem. 2020; 28: 115610
- 8b Kadri M, Hou J, Dorcet V, Roisnel T, Bechki L, Miloudi A, Bruneau C, Gramage-Doria R. Chem. Eur. J. 2017; 23: 5033
- 8c Li J.-Y, Lee C, Chen C.-Y, Lee W.-L, Ma R, Wu C.-G. Inorg. Chem. 2015; 54: 10483
- 9a Berlin AA, Razvodovskii EF. J. Polym. Sci. C, Polym. Symp. 2007; 16: 369
- 9b Wibaut JP, Broekman FW. Recl. Trav. Chim. Pays-Bas 1959; 78: 593
- 10a Anand P, Singh B, Singh N. Bioorg. Med. Chem. 2012; 20: 1175
- 10b Eckroat TJ, Manross DL, Cowan SC. Int. J. Mol. Sci. 2020; 21: 5965
- 11a Nagaki A, Ashikari Y, Takumi M, Tamaki T. Chem. Lett. 2021; 50: 485
- 11b Gutmann B, Cantillo D, Kappe CO. Angew. Chem. Int. Ed. 2015; 54: 6688
- 11c Capaldo L, Wen Z, Noël T. Chem. Sci. 2023; 14: 4230
- 11d Hartman RL, McMullen JP, Jensen KF. Angew. Chem. Int. Ed. 2011; 50: 7502
- 11e Tonhauser C, Natalello A, Löwe H, Frey H. Macromolecules 2012; 45: 9551
- 12 Bailey WF, Luderer MR, Jordan KP. J. Org. Chem. 2006; 71: 2825
- 13a Nagaki A, Yamada S, Doi M, Tomida Y, Takabayashi N, Yoshida J. Green Chem. 2011; 13: 1110
- 13b Nagaki A, Yamada D, Yamada S, Doi M, Ichinari D, Tomida Y, Takabayashi N, Yoshida J. Aust. J. Chem. 2013; 66: 199
- 13c Wakabayashi S, Takumi M, Kamio S, Wakioka M, Ohki Y, Nagaki A. Chem. Eur. J. 2023; 29: e202202882
- 14a Harenberg JH, Weidmann N, Knochel P. Synlett 2020; 31: 1880
- 14b Hessel V, Kralisch D, Kockmann N, Noël T, Wang Q. ChemSusChem 2013; 6: 746
- 14c Fuse S, Otake Y, Nakamura H. Chem. Asian J. 2018; 13: 3818
- 14d Ramanjaneyulu BT, Vishwakarma NK, Vidyacharan S, Adiyala PR, Kim D.-P. Bull. Korean Chem. Soc. 2018; 39: 757
- 15a Sagmeister P, Lebl R, Castillo I, Rehrl J, Kruisz J, Sipek M, Horn M, Sacher S, Cantillo D, Williams JD, Kappe CO. Angew. Chem. Int. Ed. 2021; 60: 8139
- 15b Jaman Z, Sobreira TJ. P, Mufti A, Ferreira CR, Cooks RG, Thompson DH. Org. Process Res. Dev. 2019; 23: 334
- 16a Nagaki A, Moriwaki Y, Yoshida J. Chem. Commun. 2012; 48: 11211
- 16b Ashikari Y, Kawaguchi T, Mandai K, Aizawa Y, Nagaki A. J. Am. Chem. Soc. 2020; 142: 17039
- 17 Baharloo F, Moslemin MH, Nadri H, Asadipour A, Mahdavi M, Emami S, Firoozpour LR, Mohebat L, Shafiee A, Foroumadi A. Eur. J. Med. Chem. 2015; 93: 196
- 18 Tong Z, Garry OL, Smith PJ, Jiang Y, Mansfield SJ, Anderson EA. Org. Lett. 2021; 23: 4888
- 19 Jiang Q, Fang L.-Q, Li Y.-H, Wang J, Li J.-H. ChemistrySelect 2023; 8: e202300780
- 20a Zhou H.-J, Huang J.-M. J. Org. Chem. 2022; 87: 5328
- 20b Sterckx H, Sambiagio C, Médran-Navarrete V, Maes BU. W. Adv. Synth. Catal. 2017; 359: 3226
- 21 DeBerardinis AM, Turlington M, Ko J, Sole L, Pu L. J. Org. Chem. 2010; 75: 2836
- 22a Zhang X, Yang C, Gao H, Wang L, Guo L, Xia W. Org. Lett. 2021; 23: 3472
- 22b Zhang X, Yang C, Gao H, Wang L, Guo L, Xia W. Org. Lett. 2021; 23: 3472
- 22c Wang G, Cao J, Gao L, Chen W, Huang W, Cheng X, Li S. J. Am. Chem. Soc. 2017; 139: 3904
- 23a Fargeas V, Favresse F, Mathieu D, Beaudet I, Charrue P, Lebret B, Piteau M, Quintard J.-P. Eur. J. Org. Chem. 2003; 1711
- 23b Nicolaou KC, Hepworth D, King NP, Finlay MR, Scarpelli R, Pereira MM, Bollbuck B, Bigot A, Werschkun B, Winssinger N. Chemistry 2000; 6: 2783
- 24a Yang L, Semba K, Nakao Y. Angew. Chem. Int. Ed. 2017; 56: 4853
- 24b Cook MJ, Fernandes I. Patent WO 2002096913 A1, 2002
The direct use of arylborates generated in flow microreactors for cross-coupling reactions has been reported, see: