Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2024; 35(15): 1807-1812
DOI: 10.1055/a-2229-1963
DOI: 10.1055/a-2229-1963
letter
Modular Synthesis of 4-Acylquinolines via Cycloaddition of 1,3-Enynes and Nitrosoarenes
This research was supported by the National Natural Science Foundation of China (22171215), Hubei Provincial Outstanding Youth Fund (2022CFA092) and Basic and Applied Basic Research Foundation of Guangdong Province (2022A1515010246 and 2022A1515110113).
Abstract
Herein, we disclose a FeBr2-promoted cycloaddition of readily available 1,3-enynes and nitrosoarenes, providing a promising platform for the synthesis of privileged 4-acylquinoline scaffolds. This simple, one-pot process is characterized by high atom-economy, broad substrate-scope, and excellent functional-group tolerance. A possible reaction mechanism was proposed, involving processes such as [4+2] cycloaddition, ring opening, aromatization, and dehydroaromatization.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2229-1963.
- Supporting Information
Publication History
Received: 15 November 2023
Accepted after revision: 13 December 2023
Accepted Manuscript online:
13 December 2023
Article published online:
05 February 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Yadav P, Shah K. Bioorg. Chem. 2021; 109: 104639
- 1b Michael JP. Nat. Prod. Rep. 2008; 25: 166
- 1c Afzal O, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M, Bawa S. Eur. J. Med. Chem. 2015; 97: 871
- 1d Kharkar PS, Deodhar MN, Kulkarni VM. Med. Chem. Res. 2009; 18: 421
- 1e Kumar S, Bawa S, Gupta H. Mini-Rev. Med. Chem. 2009; 9: 1648
- 1f Shang X, Morris-Natschke SL, Yang G, Liu Y, Guo X, Xu X, Goto M, Li J, Zhang J, Lee K.-H. Med. Res. Rev. 2018; 38: 1614
- 2a Baragaña B, Hallyburton I, Lee MC. S, Norcross NR, Grimaldi R, Otto TD, Proto WR, Blagborough AM, Meister S, Wirjanata G, Ruecker A, Upton LM, Abraham TS, Almeida MJ, Pradhan A, Porzelle A, Martínez MS, Bolscher JM, Woodland A, Luksch T, Norval S, Zuccotto F, Thomas J, Simeons F, Stojanovski L, Osuna-Cabello M, Brock PM, Churcher TS, Sala KA, Zakutansky SE, Jiménez-Díaz MB, Sanz LM, Riley J, Basak R, Campbell M, Avery VM, Sauerwein RW, Dechering KJ, Noviyanti R, Campo B, Frearson JA, Angulo-Barturen I, Ferrer-Bazaga S, Gamo FJ, Wyatt PG, Leroy D, Siegl P, Delves MJ, Kyle DE, Wittlin S, Marfurt J, Price RN, Sinden RE, Winzeler EA, Charman SA, Bebrevska L, Gray DW, Campbell S, Fairlamb AH, Willis PA, Rayner JC, Fidock DA, Read KD, Gilbert IH. Nature 2015; 522: 315
- 2b Baragaña B, Norcross NR, Wilson C, Porzelle A, Hallyburton I, Grimaldi R, Osuna-Cabello M, Norval S, Riley J, Stojanovski L, Simeons FR. C, Wyatt PG, Delves MJ, Meister S, Duffy S, Avery VM, Winzeler EA, Sinden RE, Wittlin S, Frearson JA, Gray DW, Fairlamb AH, Waterson D, Campbell SF, Willis P, Read KD, Gilbert IH. J. Med. Chem. 2016; 59: 9672
- 3 Nishisaka F, Taniguchi K, Tsugane M, Hirata G, Takagi A, Asakawa N, Kurita A, Takahashi H, Ogo N, Shishido Y, Asai A. Cancer Sci. 2020; 111: 1774
- 4 Ihara M, Taniguchi N, Noguchi K, Fukumoto K, Kametani T. J. Chem. Soc., Perkin Trans. 1 1988; 1277
- 5 Shvekhgeimer MG. A. Chem. Heterocycl. Compd. 2004; 40: 257
- 6 Pflum DA. Doebner Quinoline Synthesis. In Name Reactions in Heterocyclic Chemistry. Li JJ. Wiley; Hoboken: 2005: 407-410
- 7a Achremowicz L. Synth. Commun. 1996; 26: 1681
- 7b Tagawa Y, Yamashita K, Higuchi Y, Goto Y. Heterocycles 2003; 60: 953
- 7c Liu J, Zhang X, Yi H, Liu C, Liu R, Zhang H, Zhuo K, Lei A. Angew. Chem. Int. Ed. 2015; 54: 1261
- 7d Hruszkewycz DP, Miles KC, Thiel OR, Stahl SS. Chem. Sci. 2017; 8: 1282
- 7e Cooper JC, Luo CS, Kameyama R, Humbeck JF. V. J. Am. Chem. Soc. 2018; 140: 1243
- 8a Mai S, Li W, Li X, Zhao Y, Song Q. Nat. Commun. 2019; 10: 5709
- 8b Chu L, Lipshultz JM, MacMillan DW. C. Angew. Chem. Int. Ed. 2015; 54: 7929
- 8c Pathak A, Rajput CS, Bora PS, Sharma S. Tetrahedron Lett. 2013; 54: 2149
- 8d Legros JY, Primault G, Fiaud JC. Tetrahedron 2001; 57: 2507
- 8e Yamamoto Y, Yanagi A. Chem. Pharm. Bull. 1982; 30: 2003
- 9a Caronna T, Gardini GP, Minisci F. J. Chem. Soc. D 1969; 201
- 9b Fontana F, Minisci F, Barbosa MC. N, Vismara E. J. Org. Chem. 1991; 56: 2866
- 9c Ali W, Behera A, Guin S, Patel BK. J. Org. Chem. 2015; 80: 5625
- 9d Chen J, Wan M, Hua J, Sun Y, Lv Z, Li W, Liu L. Org. Biomol. Chem. 2015; 13: 11561
- 9e Duncton MA. MedChemComm 2011; 2: 1135
- 9f Tauber J, Imbri D, Opatz T. Molecules 2014; 19: 16190
- 9g Proctor RS. J, Phipps RJ. Angew. Chem. Int. Ed. 2019; 58: 13666
- 9h Liao Y, Jiang C, Qiang C, Liu P, Sun P. Org. Lett. 2023; 25: 7327
- 9i Siddaraju Y, Lamani M, Prabhu KR. J. Org. Chem. 2014; 79: 3856
- 10a Wang K, Chen J, Liu W, Kong W. Angew. Chem. Int. Ed. 2022; 61: e202212664
- 10b Wang K, Kong W. ACS Catal. 2023; 13: 12238
- 10c Pan Q, Ping Y, Kong W. Acc. Chem. Res. 2023; 56: 515
- 10d Ma T, Li X, Ping Y, Kong W. Chin. J. Chem. 2022; 40: 2212
- 10e Liu W, Liu C, Wang M, Kong W. ACS Catal. 2022; 12: 10207
- 10f Ping Y, Pan Q, Guo Y, Liu Y, Li X, Wang M, Kong W. J. Am. Chem. Soc. 2022; 144: 11626
- 10g Ping Y, Li X, Pan Q, Kong W. Angew. Chem. Int. Ed. 2022; 61: e202201574
- 10h Pan Q, Ping Y, Wang Y, Guo Y, Kong W. J. Am. Chem. Soc. 2021; 143: 10282
- 11a Penoni A, Nicholas KM. Chem. Commun. 2002; 484
- 11b Penoni A, Volkmann J, Nicholas KM. Org. Lett. 2002; 4: 699
- 11c Penoni A, Palmisano G, Zhao Y, Houk KN, Volkman J, Nicholas KM. J. Am. Chem. Soc. 2009; 131: 653
- 11d Murru S, Gallo AA, Srivastava RS. ACS Catal. 2011; 1: 29
- 12 During the preparation of this work, Li and Chen et al. reported a similar cascade reaction of nitrosoarenes and (-CF3-1,3-enynes, see: Li W, Huang S, Liu Q, Li X, Chen W. Org. Chem. Front. 2023; 10: 6172
- 13 Momiyama N, Yamamoto H. Angew. Chem. Int. Ed. 2002; 41: 2986
- 14 Cycloaddition of 1,3-enynes and nitrosoarenes; Typical Procedure for Phenyl(3-(trifluoromethyl)quinolin-2-yl)methanone (3aa): An oven-dried 10-mL vial equipped with a PTFE-coated stir bar was charged with FeBr2 (6.5 mg, 0.03 mmol), nitrosobenzene 2a (0.2 mmol, 21.4 mg), (3-(trifluoromethyl)but-3-en-1-yn-1-yl)benzene 1a (0.1 mmol, 19.6 mg) and anhydrous MeCN (1.3 mL) in an atmosphere of air. The reaction mixture was stirred at 80 °C for 48 hours, then concentrated under vacuum, and the residue was purified by chromatography on silica gel, eluting with petroleum ether/EtOAc (20:1→1:1) to afford 4-acylquinoline 3aa. Characterization data for 3aa: 1H NMR (400 MHz, CDCl3): δ = 9.21 (s, 1 H), 8.26 (d, J = 8.6 Hz, 1 H), 7.90–7.84 (m, 1 H), 7.77 (d, J = 7.0 Hz, 2 H), 7.67–7.54 (m, 3 H), 7.51–7.45 (m, 2 H). 13C NMR (151 MHz, CDCl3): δ = 194.0, 149.2, 146.3 (q, J = 3.9 Hz), 144.7 (q, J = 2.4 Hz), 136.0, 134.8, 132.1, 130.1, 129.7, 129.0, 128.7, 126.1, 123.8, 123.3 (q, J = 274.6 Hz), 119.6 (q, J = 32.0 Hz). 19F NMR (376 MHz, CDCl3): δ = –56.96. HRMS (ESI): m/z [M + H]+ calcd for C17H11F3NO+: 302.0787; found: 302.0776. For experimental protocols, characterization data, and copies of NMR spectra of all products, see the Supporting Information.
- 15 Jia H, Häring AP, Berger F, Zhang L, Ritter T. J. Am. Chem. Soc. 2021; 143: 7623
- 16a Zhao D, Zhang J, Xie Z. J. Am. Chem. Soc. 2015; 137: 13938
- 16b Mlostoń G, Urbaniak K, Jasiński M, Würthwein E.-U, Heimgartner H, Zimmer R, Reissig H.-U. Chem. Eur. J. 2020; 26: 237
- 16c Gawade SA, Huple DB, Liu R.-S. J. Am. Chem. Soc. 2014; 136: 2978
- 16d Pagar VV, Jadhav AM, Liu R.-S. J. Am. Chem. Soc. 2011; 133: 20728
- 16e Liu M, Yu Z, Li J, Xiao Y. Molecules 2022; 27: 9020
- 17 Zhao D, Zhang J, Xie Z. J. Am. Chem. Soc. 2015; 137: 13938