Subscribe to RSS
DOI: 10.1055/a-2235-1380
Photocatalyzed C–F Bond Heteroarylation of Trifluoromethylarenes with Heteroarenes: Two Roles of Bu3SnI as Fluoride Ion Scavenger and Activator for Photocatalyst
This work was financially supported by the Japan Society for the Promotion of Science [JSPS KAKENHI JP23K17845 (M.Y.)]. This work was supported by the Grant-in-Aid for Transformative Research Areas (A) 21H05212 (M.Y.) Digitalization-driven Transformative Organic Synthesis (Digi-TOS) from the Ministry of Education, Culture, Sports, Science and Technology, Japan and JST CREST (Core Research for Evolutional Science and Technology) Grant No. JPMJCR20R3 (M.Y.), Japan. N.S. acknowledges support from the JSPS Fellowship for Young Scientists (22J10775). Y.N. acknowledges support from Research Encouragement Grants of The Asahi Glass Foundation.
Abstract
We report the C–F bond heteroarylation of trifluoromethylarenes with heteroarenes by using Ir(ppy)3 catalyst and Bu3SnI under visible-light irradiation. Various heteroarenes such as pyrrole, furan, and thiophene derivatives were applied to the present reaction. The present heteroarylation enables the transformation of various functionalized trifluoromethylarenes because of the mild reaction conditions. Notably, the late-stage transformation of a drug molecule, bicalutamide, was demonstrated. Mechanistic studies including a light on–off interval experiment, Stern–Volmer luminescence-quenching measurements, and DFT calculations clarified two critical roles of Bu3SnI for the successful progress of the heteroarylation. Bu3SnI functions as a fluoride ion scavenger to suppress the undesired C–F bond re-formation. Bu3SnI also acts as a single-electron source for the reduction of photoexcited Ir(ppy)3* to generate Ir(II) species to effectively reduce ArCF3.
Key words
C–F bond transformation - diaryldifluoromethanes - heteroarylation - photocatalysis - organostannanes - pyrroles - furans - thiophenesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2235-1380.
- Supporting Information
Publication History
Received: 28 November 2023
Accepted after revision: 22 December 2023
Accepted Manuscript online:
22 December 2023
Article published online:
29 January 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Blackburn GM, England DA, Kolkmann F. J. Chem. Soc., Chem. Commun. 1981; 930
- 1b Blackburn GM, Kent DE, Kolkmann F. J. Chem. Soc., Perkin Trans. 1 1984; 1119
- 1c Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
- 1d Meanwell NA. J. Med. Chem. 2018; 61: 5822
- 1e Johnson BM, Shu Y.-Z, Zhuo X, Meanwell NA. J. Med. Chem. 2020; 63: 6315
- 2a Chang Y, Tewari A, Adi AI, Bae C. Tetrahedron 2008; 64: 9837
- 2b Gu JW, Guo WH, Zhang X. Org. Chem. Front. 2015; 2: 38
- 2c Nambo M, Yim JC. H, Freitas LB. O, Tahara Y, Ariki ZT, Maekawa Y, Yokogawa D, Crudden C. Nat. Commun. 2019; 10: 4528
- 2d Geri JB, Wolfe MM. W, Szymczak NK. J. Am. Chem. Soc. 2018; 140: 9404
- 2e Bunnell A, Lalloo N, Brigham C, Sanford MS. Org. Lett. 2023; 25: 7584
- 3a Wang J, Sánchez-Roselló M, Aceña JL, Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 3b Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
- 4a Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 475
- 4b Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
- 4c Besset T, Schneider C, Cahard D. Angew. Chem. Int. Ed. 2012; 51: 5048
- 4d Alonso C, de Marigorta EM, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
- 4e Barata-Vallejo S, Lantaño B, Postigo A. Chem. Eur. J. 2014; 20: 16806
- 4f Xiao H, Zhang Z, Fang Y, Zhu L, Li C. Chem. Soc. Rev. 2021; 50: 6308
- 4g Mandal D, Maji S, Pal T, Sinha SK, Maiti D. Chem. Commun. 2022; 58: 10442
- 5a Yoshida S, Shimomori K, Kim Y, Hosoya T. Angew. Chem. Int. Ed. 2016; 55: 10406
- 5b Mandal D, Gupta R, Jaiswal AK, Young RD. J. Am. Chem. Soc. 2020; 142: 2572
- 5c Cabrera-Trujillo JJ, Fernández I. Chem. Eur. J. 2021; 27: 3823
- 5d Kako M, Morita T, Torihara T, Nakadaira Y. J. Chem. Soc., Chem. Commun. 1993; 678
- 5e Clavel P, Lessene G, Biran C, Bordeau M, Roques N, Trévin S, de Montauzon D. J. Fluorine Chem. 2001; 107: 301
- 5f Amii H, Hatamoto Y, Seo M, Uneyama K. J. Org. Chem. 2001; 66: 7216
- 5g Luo C, Bandar JS. J. Am. Chem. Soc. 2019; 141: 14120
- 5h Chen K, Berg N, Gschwind R, König B. J. Am. Chem. Soc. 2017; 139: 18444
- 5i Wang H, Jui NT. J. Am. Chem. Soc. 2018; 140: 163
- 5j Vogt DB, Seath CP, Wang H, Jui NT. J. Am. Chem. Soc. 2019; 141: 13203
- 5k Xu J, Liu J.-W, Wang R, Yang J, Zhao K.-K, Xu H.-J. ACS Catal. 2023; 13: 7339
- 5l Hendy CM, Pratt CJ, Jui NT, Blakey SB. Org. Lett. 2023; 25: 1397
- 5m Wright SE, Bandar JS. J. Am. Chem. Soc. 2022; 144: 13032
- 5n Liu C, Li K, Shang R. ACS Catal. 2022; 12: 4103
- 6a Xu W, Zhang Q, Shao Q, Xia C, Wu M. Asian J. Org. Chem. 2021; 10: 2454
- 6b Zhou L. Molecules 2021; 26: 7051
- 6c Li S, Shu W. Chem. Commun. 2022; 58: 1066
- 6d Wang Z, Sun Y, Shen L.-Y, Yang W.-C, Meng F, Li P. Org. Chem. Front. 2022; 9: 853
- 6e Nishimoto Y, Sugihara N, Yasuda M. Synthesis 2022; 54: 2765
- 6f Yoshida S. Chem. Rec. 2023; 23: e202200308
- 6g Hooker LV, Bander JS. Angew. Chem. Int. Ed. 2023; 62: e202308880
- 7 Luo Y.-C, Tong F.-F, Zhang Y, He C.-Y, Zhang X. J. Am. Chem. Soc. 2021; 143: 13971
- 8 Shreiber ST, Granados BM, Majhi J, Campbell MW, Patel S, Molander GA. Org. Lett. 2022; 24: 8542
- 9 Sugihara N, Suzuki K, Nishimoto Y, Yasuda M. J. Am. Chem. Soc. 2021; 143: 9308
- 10 Nacsa ED, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 3322
- 11a Dedeian K, Djurovich PI, Garces FO, Carlson G, Watts RJ. Inorg. Chem. 1991; 30: 1685
- 11b Tian N, Lenkeit D, Pelz S, Fischer LH, Escudero D, Schiewek R, Klink D, Schmitz OJ, Gonzalez L, Schaferling M, Holder E. Eur. J. Inorg. Chem. 2010; 4875
- 12a Treat NJ, Sprafke H, Kamer JW, Clark PG, Barton BE, de Alaniz JR, Fors BP, Hawker CJ. J. Am. Chem. Soc. 2014; 136: 16096
- 12b Discekici EH, Treat NJ, Poelma SO, Mattson KM, Hudson ZM, Luo Y, Hawker CJ, de Alaniz JR. Chem. Commun. 2015; 51: 11705
- 13 We measured the redox potential of Bu3SnI (see the Supporting Information). Another possibility is that iodide ion (I–) functions as a reductant [E(I•/I–) = 0.27 V vs SCE]14a because I– is often used as a redox mediator in dye-sensitized solar cell technology.14b
- 14a Bentley CL, Bond AM, Hollenkamp AF, Mahon PJ, Zhang J. J. Phys. Chem. C 2015; 119: 22392
- 14b Boschloo G, Hagfeldt A. Acc. Chem. Res. 2009; 42: 1819
- 14c Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Chem. Rev. 2010; 110: 6595
- 15 DFT calculations were conducted using ωB97XD/6-31+G(d,p) for C, H, N, F, and DGDZVP for Sn, I; solvent effect (SMD) = THF.
- 16 Cockshott ID. Clin. Pharmacokinet. 2004; 43: 855
- 17 Huang F, Batey RA. Tetrahedron 2007; 63: 7667
- 18 Thurner A, Faigl F, Ágai B, Tőke L. Synth. Commun. 1998; 28: 443
Selected reviews:
Reports on the synthesis of diaryldifluoromethanes without use of ArCF3 as a starting material:
Selected reviews:
Selected reviews:
Recent reviews on C–F bond transformation of perfluoroalkyl compounds:
For the redox potential of E(I•/I–), see:
For the function of I– as a redox mediator, see: