Synlett 2024; 35(17): 2015-2021
DOI: 10.1055/a-2256-2800
letter
Energetic Molecules

Modification of an N-Methyl Group toward a New Energetic Melt-Castable Material with a Good Energy-Stability Balance

Fang Chen
a   Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, P. R. of China
,
Siwei Song
b   School of Astronautics, Northwestern Polytechnical University, Xi’an, 710072, P. R. of China
,
Qinghua Zhang
a   Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, P. R. of China
b   School of Astronautics, Northwestern Polytechnical University, Xi’an, 710072, P. R. of China
,
Yi Wang
a   Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, P. R. of China
b   School of Astronautics, Northwestern Polytechnical University, Xi’an, 710072, P. R. of China
› Author Affiliations
The authors thank the National Natural Science Foundation of China (No. 22075259, 22175157, 22205218) for financial support.


Abstract

The energy and stability properties of energetic materials are often contradictory to each other (e.g., high energy vs low thermal stability). There is no doubt that it is still challenging to explore the effective balance between energetic performance and molecular stability, especially for melt-castable materials. In this study, we selected the 4-methoxy-3,5-dinitropyrazole framework and a stable nitro group to design a new energetic melt-castable compound, namely 4-methoxy-3,5-dinitro-1-(nitromethyl)-1H-pyrazole (MDNNMP). Compared with the N-methylation product DMDNP and the nitrato-substituted derivative MC-7, MDNNMP exhibits a better balanced performance, including good thermal stability (Td : 203.7 °C), detonation velocity (Dv : 8099 m s–1) and impact sensitivity (20 J). The favorable balanced performance of MDNNMP suggests that it is a suitable candidate as a high-performance melt-castable material. Additionally, compared with the nitratomethyl group, the nitromethyl group demonstrates superior advantages in performance regulation.

Supporting Information



Publication History

Received: 31 October 2023

Accepted after revision: 29 January 2024

Accepted Manuscript online:
29 January 2024

Article published online:
28 February 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Li J, Liu Y, Ma W, Fei T, He C, Pang S. Nat. Commun. 2022; 13: 5697
    • 1b Yocca SR, Zeller M, Byrd EF. C, Piercey DG. J. Mater. Chem. A 2022; 10: 1876
    • 2a Chinnam AK, Staples RJ, Shreeve JM. Org. Lett. 2023; 25: 1481
    • 2b Cai J, Fei T, Li R, Xiong J, Zhang J, Yin P, Pang S. ACS Appl. Mater. Interfaces 2022; 14: 52951
    • 2c Zhang Q. Fershtat L. L. 2022; 3: 109
  • 3 Ding N, Sun Q, Zhao C, Zhang W, Li S, Pang S. Mater. Chem. Front. 2022; 6: 2670
  • 4 Hussein AK, Zeman S, Elbeih A. J. Energetic Mater. 2023; 41: 351
  • 5 Yin P, Zhang J, Parrish DA, Shreeve JM. Chem. Eur. J. 2014; 20: 16529
    • 6a Ravi P, Badgujar DM, Gore GM, Tewari SP, Sikder AK. Propellants Explos. Pyrotech. 2011; 36: 393
    • 6b Zhang J, Bi F, Yang Z, Xue Q, Wang B. Molecules 2021; 26: 7072
  • 7 Ma Q, Zhang Z, Yang W, Li W, Ju J, Fan G. Energetic Mater. Front. 2021; 2: 69
    • 8a Song S, Chen F, Wang Y, Wang K, Yan M, Zhang Q. J. Mater. Chem. A 2021; 9: 21723
    • 8b Chen F, Wang Y, Song S, Tan L.-L, Wei M, Huang C, Chen J.-B, Chen S, Huang M, Zhang Q. ACS Appl. Mater. Interfaces 2023; 15: 24408
  • 9 Szala M, Sabatini JJ. Z. Anorg. Allg. Chem. 2018; 644: 262
    • 10a Yin P, Parrish DA, Shreeve JM. Chem. Eur. J. 2014; 20: 6707
    • 10b Yin P, Zhang J, He C, Parrish DA, Shreeve JM. J. Mater. Chem. A 2014; 2: 3200
  • 11 Li C, Zhu T, Lei C, Cheng G, Xiao C, Yang H. J. Mater. Chem. A 2023; 11: 12043
    • 12a Zhang X, Lin X. New J. Chem. 2022; 46: 14186
    • 12b Chen P, Dou H, Zhang J, He C, Pang S. ACS Appl. Mater. Interfaces 2023; 15: 4144
  • 13 4-Methoxy-3,5-dinitro-1-(nitromethyl)-1H-pyrazole (MDNNMP) Compound 1 (0.5 g, 2.66 mmol) in DMF (5 mL) was treated with ammonium hydroxide (0.3 g, 8.57 mmol) and stirred for 1 h at ambient temperature. A mixture of the resulting ammonium 4-methoxy-3,5-dinitropyrazolate (0.5 g, 2.44 mmol) in DMF (5 mL) was treated with bromonitromethane (0.5 g, 3.66 mmol) and the resulting mixture was stirred at 50 °C for 3 h. After the reaction was complete, the mixture was poured into water and extracted with ethyl acetate. The combined organic layer was dried, filtered and purified by column chromatography (petroleum ether/ethyl acetate, 9:1) to yield the target product (0.18 g, 30%) as a white solid. 1H NMR (400 MHz, DMSO-d 6): δ = 7.15 (s, 2 H, CH2), 4.09 (s, 3 H, CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 147.11, 138.04, 136.14, 83.75, 64.24. HRMS (ESI): m/z [M – H] calcd for C5H4N5O7: 246.0111; found: 246.0117. Anal. Calcd for C5H5N5O7: C, 24.30; H, 2.04; N, 28.34. Found: C, 24.31; H, 2.06; N, 28.32.
    • 14a Wang J.-H, Shen C, Liu Y.-C, Luo J, Duan Y. J. Mol. Struct. 2018; 1163: 54
    • 14b Gopal R. Anorg. Allg. Chem. 1955; 278: 42
    • 15a Chen F, Song S, Wang K, Wang Y, Zhang Q. Chem. Eng. J. 2022; 435: 135053
    • 15b Chen F, Wang Y, Song S, Wang K, Zhang Q. J. Phys. Chem. C 2023; 127: 8887
  • 17 Parker TM, Burns LA, Parrish RM, Ryno AG, Sherrill CD. J. Chem. Phys. 2014; 140: 094106
    • 18a Chan B, Deng J, Radom L. J. Chem. Theory Comput. 2011; 7: 112
    • 18b Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 09, Revision D.01. Gaussian Inc; Wallingford (CT, USA): 2013
    • 18c Suceska M. EXPLO5 (Version 6 02). Brodarski Institute; Zagreb (Croatia): 2013
  • 19 Duan B, Liu N, Lu X, Mo H, Zhang Q, Liu Y, Wang B. Sci. Rep. 2020; 10: 18292
  • 20 Lu T, Chen F. J. Phys. Chem. A 2013; 117: 3100
    • 21a Politzer P, Murray JS. J. Mol. Model. 2015; 21: 25
    • 21b Zhang C. J. Hazard. Mater. 2009; 161: 21
    • 21c Manaa MR, Fried LE, Reed EJ. J. Comput.-Aided Mater. Des. 2003; 10: 75