Keyword
Mendelian randomization - migraine - venous thromboembolism - bidirectional - causality
Introduction
Venous thromboembolism (VTE) encompasses both deep vein thrombosis and pulmonary embolism,[1] ranking third globally as a prevalent vascular disorder associated with mortality.[2] This increases the mortality risk for patients and compounds the financial burden
on health care services. Hence, the ongoing evaluation and assessment of VTE risk
in clinical settings are crucial.
Migraine, characterized by recurrent episodes of severe unilateral headaches accompanied
by pulsating sensations and autonomic symptoms, affects approximately one billion
individuals worldwide.[3] Several research studies indicate an increase in VTE incidence among migraine sufferers.[4]
[5]
[6]
[7]
[8] Hence, there is a significant need for further investigation to elucidate the causal
relationship between VTE and migraines.
Mendelian randomization (MR) is a methodology that utilizes genetic variants as instrumental
variables (IVs) to explore the causal association between a modifiable exposure and
a disease outcome.[9] By leveraging the random allocation and fixed nature of an individual's alleles
at conception, this approach helps alleviate concerns regarding reverse causality
and environmental confounders commonly encountered in traditional epidemiological
methods.
In order to mitigate confounding factors and ensure robust outcomes, this investigation
adopts a pioneering approach by utilizing MR to explore the genetic-level causal correlation
between migraine and VTE. To the best of our knowledge, no previous study has employed
this method to examine the association between these two pathological conditions,
thereby lending an innovative and cutting-edge aspect to this research.
Materials and Methods
Research Methodology
A rigorous bidirectional two-sample MR examination was implemented to probe the causal
link between migraine and VTE risk, subsequent to a meticulous screening mechanism.
For achieving credible estimations of MR causality, efficacious genetic variances
serving as IVs must meet three central postulates: (I) relevance assumption, asserting
that variations must demonstrate intimate association with the exposure element; (II)
independence/exchangeability assumption, demanding no correlations be exhibited with
any measured, unmeasured, or inconspicuous confounding elements germane to the researched
correlation of interest; and (III) exclusion restriction assumption, maintaining that
the variation affects the outcome exclusively through the exposure, devoid of alternative
routes.[10]
[11] A single nucleotide polymorphism (SNP) refers to a genomic variant where a single
nucleotide undergoes alteration at a specific locus within the DNA sequence. SNPs
were employed as IVs in this study for estimating causal effects. The study's design
is graphically portrayed in [Fig. 1], emphasizing the three fundamental postulates of MR. These postulates are of the
utmost importance in affirming the validity of the MR examination and ensuring the
reliability of the resultant causal inferences.[12]
Fig. 1 This figure illustrates the research methodology for the bidirectional Mendelian
randomization analysis concerning migraine and VTE. Assumption I: relevance assumption;
Assumption II: independence/exchangeability assumption; Assumption III: exclusion
restriction assumption.
Data Sources
Our SNPs are obtained from large-scale genome-wide association studies (GWAS) public
databases. The exposure variable for this study was obtained from the largest migraine
GWAS meta-analysis conducted by the IEU Open GWAS project, which can be accessed at
https://gwas.mrcieu.ac.uk/datasets.[13]
[14] The outcome variable was derived from the largest VTE GWAS conducted by FinnGen,
available at https://www.finngen.fi.[15] A comprehensive overview of the data sources used in our study can be found in [Table 1].
Table 1
Description of GWAS used for each phenotype
Variable
|
Sample size
|
ID
|
Population
|
Database
|
Year
|
Migraine
|
337159
|
ukb-a-87
|
European
|
IEU Open GWAS project
|
2017
|
VTE
|
218792
|
finn-b-I9_VTE
|
European
|
FinnGen
|
2021
|
Abbreviations: GWAS, genome-wide association studies; VTE, venous thromboembolism.
Note: Basic information of GWAS for migraine and VTE is displayed in this table.
The variances in genetic variations and exposure distributions across diverse ethnicities
could potentially result in spurious correlations between genetic variants and exposures.[16] Consequently, the migraine and VTE GWAS for this study were sourced from a homogeneous
European populace to circumvent such inaccurate associations. It is crucial to highlight
that the data harvested from public databases were current up to March 31, 2023. Given
the public nature of all data utilized in our study, there was no necessity for further
ethical approval.
Filtering Criteria of IVs
To select appropriate SNPs as IVs, we followed standard assumptions of MR. First,
we performed a screening process using the migraine GWAS summary data, applying a
significance threshold of p < 5 × 10−8 (Assumption I). To ensure the independence of SNPs and mitigate the effects of linkage
disequilibrium, we set the linkage disequilibrium coefficient (r
2) to 0.001 and restricted the width of the linkage disequilibrium region to 10,000 kb.
PhenoScanner (http://www.phenoscanner.medschl.cam.ac.uk/) serves as a versatile tool, enabling users to explore genetic variants, genes, and
traits linked to a wide spectrum of phenotypes.[17]
[18] Utilizing PhenoScanner v2, we ruled out SNPs linked with potential confounding constituents
and outcomes, thereby addressing assumptions II and III. Subsequently, we extracted
the relevant SNPs from the VTE GWAS summary data, ensuring a minimum r
2 > 0.8 and replacing missing SNPs with highly linked SNPs. We excluded SNPs without
replacement sites and palindromic SNPs and combined the information from both datasets.
Finally, we excluded SNPs directly associated with VTE at a significance level of
p < 5 × 10−8 and prioritized IVs with an F-statistic [F-statistic = (β/SE)2] > 10 to minimize
weak instrument bias.[19]
Statistical Analysis
For our analysis, we employed the inverse-variance weighted (IVW) random-effects regression
model to assess the causal relationship between migraine and VTE, utilizing SNPs as
IVs. This approach allowed us to directly calculate the causal effect using summary
data, eliminating the need for individual-level data. To assess SNP heterogeneity,
we conducted Cochran's Q test and, in the presence of heterogeneity, relied on the
results of the IVW model. To examine the presence of pleiotropy, we utilized the MR-Egger
method and conducted leave-one-out analysis. All statistical analyses were performed
using the TwoSampleMR package in R 4.2.2 software, with a significance level set at
α = 0.05.
Results
In the present investigation, we capitalized on a bidirectional two-sample MR analysis
in individuals of European descent to scrutinize the potential causative correlation
between migraines and VTE risk. Our investigation implies a potential bidirectional
pathogenic relationship between migraines and the risk of VTE, as supported by the
specific analysis results detailed in [Table 2].
Table 2
Mendelian randomization regression causal association results
Exposures
|
SNPs (no.)
|
Methods
|
β
|
SE
|
OR (95% CI)
|
p
|
Migraine
|
11
|
IVW
|
4.566
|
1.580
|
96.155 (4.342–2129.458)
|
0.004
|
VTE
|
12
|
IVW
|
0.002
|
0.001
|
1.002 (1.000–1.004);
|
0.016
|
Simple mode
|
0.003
|
0.001
|
1.003 (1.000–1.006)
|
0.047
|
Abbreviations: CI: confidence interval; IVW, inverse variance weighting; OR, odds
ratio; SE, standard error; SNPs, single nucleotide polymorphisms; VTE, venous thromboembolism.
Note: This table displays the causal relationship between migraine leading to VTE
and VTE leading to migraine.
Mendelian Randomization Analysis
During the IV screening process, it was identified that SNP r10908505 was associated
with body mass index (BMI) in VTE. Considering the established association between
BMI and VTE,[1]
[15] this violated Assumption III and the SNP was subsequently excluded. The VTE dataset
ultimately consisted of 11 SNPs, with individual SNP F-statistics ranging from 29.76
to 96.77 (all >10), indicating a minimal potential for causal associations to be confounded
by weak IV bias ([Supplementary Table S1], available in the online version). The IVW model revealed that migraine was a statistically
significant risk factor for the onset of VTE (odds ratio [OR] = 96.155, 95% confidence
interval [CI]: 4.3422–129.458, p = 0.004) ([Table 2], [Fig. 2A]). The scatter plot ([Fig. 2B]) and funnel plot ([Fig. 2C]) of migraine demonstrated a symmetrical distribution of all included SNPs, suggesting
a limited possibility of bias affecting the causal association. The Cochran's Q test,
conducted on the MR-Egger regression and the IVW method, yielded statistics of 5.610
and 5.973 (p > 0.05), indicating the absence of heterogeneity among the SNPs ([Supplementary Table S2], available in the online version). These findings suggest a positive correlation
between the strength of association between the IVs and migraine, satisfying the assumptions
of IV analysis. The MR-Egger regression analysis showed no statistically significant
difference from zero for the intercept term (p = 0.5617), indicating the absence of genetic pleiotropy among the SNPs ([Supplementary Table S3], available in the online version). Additionally, the leave-one-out analysis revealed
that the inclusion or exclusion of individual SNPs did not substantially impact the
estimated causal effects, demonstrating the robustness of the MR results obtained
in our investigation ([Fig. 2D]).
Fig. 2 This figure explores the correlation between migraine risk and VTE, validating the
presence of heterogeneity and pleiotropy. (A) The forest plot displays individual IVs, with each point flanked by lines that depict
the 95% confidence interval. The effect of SNPs on the exposure (migraine) is shown
along the x-axis, whereas their impact on the outcome (VTE) is presented on the y-axis. A fitted line reflects the Mendelian randomization analysis results. (B) A scatter plot visualizes each IV, with the SNP effects on both exposure and outcome
similar to that of the forest plot. Again, a fitted line represents the Mendelian
randomization results. (C) The funnel plot positions the coefficient βIV from the instrumental variable regression on the x-axis to demonstrate the association's strength, while the inverse of its standard
error (1/SEIV
†) on the y-axis indicates the precision of this estimate. (D) A leave-one-out sensitivity analysis is shown on the x-axis, charting the estimated effects from the Mendelian randomization analysis. With
each SNP associated with migraine successively excluded, the analysis recalculates
the Mendelian randomization effect estimates, culminating with the “all” category
that encompasses all considered SNPs. IV, instrumental variable; SNP, single nucleotide
polymorphisms; VTE, venous thromboembolism; SE, standard error. †SE is the standard error of β.
Reverse Mendelian Randomization Analysis
Upon screening for IVs in migraine patients, SNP rs6060308 was excluded due to its
association with education[20]
[21] and violation of Assumption III. The final migraine dataset comprised 13 SNPs, with
individual SNP F-statistics ranging from 30.60 to 354.34, all surpassing the threshold
of 10 ([Supplementary Table S4], available in the online version). Both the IVW and simple models supported VTE
as a risk factor for migraine. The IVW analysis yielded an OR of 1.002 (95% CI: 1.000–1.004,
p = 0.016), while the simple model yielded an OR of 1.003 (95% CI: 1.000–1.006, p = 0.047) ([Table 2], [Fig. 3A]). The scatter plot ([Fig. 3B]) and funnel plot ([Fig. 3C]) exhibited symmetrical distributions across all included SNPs, indicating minimal
potential for biases affecting the causal association. Heterogeneity among SNPs was
observed through the Cochran's Q test of the IVW method and MR-Egger regression, with
Q statistics of 18.697 and 20.377, respectively, both with p < 0.05 ([Supplementary Table S2], available in the online version). Therefore, careful consideration is necessary
for the results obtained from the random-effects IVW method. MR-Egger regression analysis
revealed a nonsignificant difference between the intercept term and zero (p = 0.3655), suggesting the absence of genetic pleiotropy among the SNPs ([Supplementary Table S3], available in the online version). Additionally, the leave-one-out analysis demonstrated
that the inclusion or exclusion of individual SNPs had no substantial impact on the
estimated causal effect ([Fig. 3D]).
Fig. 3 (A–D) This figure presents the relationship between VTE risk and migraine, also verifying
heterogeneity and pleiotropy through similar graphic representations as detailed for
[Fig. 2], but with the exposure and outcome reversed—SNPs' effect on VTE and outcome on migraine.
SNP, single nucleotide polymorphisms; VTE, venous thromboembolism.
Discussion
VTE constitutes a grave health hazard to patients, necessitating rigorous clinical
surveillance. Distinct from common VTE risk factors such as cancer,[22] diabetes,[23] lupus,[24] and antiphospholipid syndrome,[25] migraines remain absent from prevalent VTE guidelines or advisories. The MR findings
from our research provide first-of-its-kind evidence of a causal nexus between migraines
and VTE in individuals of European descent, signaling that migraines potently predispose
individuals to VTE (IVW OR = 96.155, 95% CI: 4.342–2129.458), while VTE presents a
weak risk factor for migraines (IVW OR = 1.002, 95% CI: 1.000–1.004). Given the robustness
of the IVW analysis, the MR analysis is considered reliable.
Our MR analysis discloses a potential causal association between individuals suffering
from migraines and VTE incidence, with a risk rate 96.155 times higher in comparison
to nonmigraine sufferers. Previous observational endeavors investigating VTE risk
amidst migraine patients have been scant and have yielded discordant outcomes, complicating
the provision of clinical directives.[26]
[27] In a longitudinal inquiry with a 19-year follow-up, Adelborg et al discerned a heightened
VTE risk in individuals afflicted with migraines.[4] Peng et al's prospective clinical study unveiled a more than double VTE risk increase
in migraine patients during a 4-year follow-up.[5] Schwaiger et al's cohort study, incorporating 574 patients aged 55 to 94, observed
a significant escalation in VTE risk among elderly individuals with migraines.[6]
[28] Bushnell et al uncovered a tripled VTE risk during pregnancy in migraine-affected
women.[29] Although these studies validate a potential correlation between migraines and VTE,
their persuasiveness is restricted due to other prominent VTE risk factors (such as
advanced age and pregnancy) and contradicting findings in existing observational studies.
For instance, Folsom et al observed no significant correlation between migraines and
VTE risk in elderly individuals, contradicting Schwaiger's conclusion.[7] However, he clarified that the cohort incorporated in his study did not undergo
rigorous neurological migraine diagnosis, possibly leading to confounding biases and
generating findings that contradict other scholarly endeavors.[7] These contradictions originate from observational studies examining associations
rather than causal relationships, invariably involving a confluence of various confounding
factors. MR, leveraging SNPs as IVs to ascertain the causal link between migraines
and VTE risk, can eliminate other confounding elements resulting in more reliable
outcomes. Based on this finding, monitoring VTE risk among migraine patients in clinical
practice is recommended.
The reverse MR analysis reveals that compared to non-VTE patients, those with VTE
among individuals of European ancestry exhibit a marginally heightened susceptibility
to migraines, with a relative risk of 1.02 (as per the IVW method). This discovery
concurs with the existing void in research on migraines among VTE patients. Thus,
even with slightly increased risks of migraines in VTE patients, we do not advocate
for heightened concern regarding the emergence of migraines among this patient group.
Our endeavor seeks to offer a preliminary examination of the potential mechanisms
underlying the interplay between migraines and VTE. The incidence of VTE habitually
involves Virchow's triad, encompassing endothelial damage, venous stasis, and hypercoagulability.[30] On the genetic association front, the SNPs rs9349379 and rs11172113, acting as IVs
for migraines, display relevance to the mechanisms underpinning VTE. Prior research
earmarks the gene corresponding to rs9349379, PHACTR1 ([Supplementary Table S1], available in the online version), as a catalyst for the upregulation of EDN1.[31] Elevated EDN1 expression is associated with increased VTE susceptibility,[32] and EDN1 inhibition can diminish VTE incidence,[33] potentially through Endothelin 1-mediated vascular endothelial inflammation leading
to thrombus formation.[34] The SNP rs11172113 corresponds to the gene LRP1 ([Supplementary Table S1], available in the online version).[35]
LRP1 can facilitate the upregulation of FVIII, culminating in an increase in plasma coagulation factor VIII,[36] thereby leading to heightened blood coagulability and an associated elevated VTE
risk.[37] While various studies propose divergent mechanisms, they collectively signal that
migraines can instigate a hypercoagulable state, thereby promoting the onset of VTE.
The SNPs serving as IVs for VTE did not unveil any association with the onset of migraines.
This corroborates our MR analysis outcomes, indicating that VTE is merely a weak risk
factor for migraines.
Strengths and Limitations
This study possesses several notable strengths. First, it fulfills all three assumptions
of MR, minimizing the influence of confounding factors and addressing the limitations
inherent in observational studies, thus yielding more robust findings. We carefully
excluded two SNPs (rs10908505 and rs6060308) that could potentially impact the results.
In addition, we employed PhenoScanner v2 to comprehensively probe confounding variables
related to VTE, as described earlier, and factors associated with migraines, such
as acute migraine medication overuse, obesity, depression, stress, and alcohol, leading
to the subsequent exclusion of relevant SNPs. This ensured that the selected SNPs
specifically captured the causal effects and eliminated potential confounding effects
from polygenic associations with disease susceptibility. Second, the study sample
was restricted to individuals of European descent, minimizing the potential bias introduced
by population heterogeneity and enhancing the internal validity of the findings. Third,
the use of strongly correlated SNPs (F >> 10) in both migraine → VTE and VTE → migraine
analyses enhances the validity of the IVs. Finally, this study pioneers the hypothesis
of a plausible causal association between VTE and an elevated susceptibility to migraines,
offering novel insights into their potential relationship.
Nonetheless, it is essential to acknowledge the presence of several limitations in
this study that warrant consideration. First, the study participants were predominantly
of European ancestry, which, although it avoids the influence of ethnicity on the
results, limits the generalizability of the findings to other ethnic groups. Second,
our study solely establishes the causal relationship between migraine and VTE risk
without elucidating the underlying mechanisms. Third, we only selected SNPs that met
the stringent genome-wide significance level (p < 5 × 10−8), potentially excluding truly relevant variations that did not reach this threshold.
Lastly, as our MR analysis relies on publicly available summary statistics data, the
lack of detailed clinical information hinders subgroup analysis.
Conclusion
In essence, the bidirectional Mendelian randomization analysis, conducted within the
European populace, indicates the presence of a relatively strong causal correlation
between migraines and VTE, while the causative relationship between VTE and migraines
appears exceedingly faint. These deductions imply the need for rigorous monitoring
of VTE in individuals of European descent suffering from migraines, thus requiring
synergistic effort between general physicians and neurologists. Nevertheless, VTE
patients should refrain from undue worries concerning the incidence of migraines.
Further, we stress the importance of harnessing information gleaned from a wide array
of observational studies and controlled experiments to strengthen the credibility
of drawn causal inferences. This is pivotal in establishing a mutual corroboration
with the results obtained through MR analysis. Hence, the exigency for additional
stringent observational studies and comprehensive laboratory research prevails to
corroborate the conclusions made in this study.
What is known about this topic?
-
Previous research has not definitively established whether migraine is a risk factor
for VTE, and observational studies have contradictory findings.
-
Previous studies do not provide evidence for the prevention of VTE occurrence in patients
with migraines.
What does this paper add?
-
Migraine has been identified as a strong-risk factor for VTE.
-
VTE has been identified as a weak-risk factor for migraine.
-
For the first time, genetic evidence has been presented to emphasize the importance
of preventing VTE occurrence in individuals with migraines.