Subscribe to RSS
DOI: 10.1055/a-2321-1711
Bildgebende Diagnostik der kindlichen Lunge mit MRT und CT
Pediatric lung imaging with MRI and CTZUSAMMENFASSUNG
Obwohl die Röntgenaufnahme des Thorax nach wie vor das bildgebende Standardverfahren in der pädiatrischen Lungendiagnostik ist, werden die schnittbildgebenden Techniken für spezielle Fragestellungen auch im Kindes- und Jugendalter regelhaft benötigt. Durch beträchtliche technologische Fortschritte haben sich die Möglichkeiten der Lungenbildgebung mittels CT und MRT deutlich erweitert. Wenngleich Strahlenexposition und Untersuchungszeiten von CT-Untersuchungen drastisch gesenkt werden konnten, sind eine akkurate Nutzen-Risiko-Abwägung und die Erwägung strahlenfreier Alternativmethoden weiterhin von großer Wichtigkeit. In diesem Zusammenhang kommt die strahlenfreie MRT, die neben der morphologischen Darstellung der Lunge inzwischen auch funktionelle Informationen liefern kann, zunehmend zum Einsatz. Pädiatrische Schnittbildgebung, insbesondere die zeitintensivere MRT, erfordert bei jüngeren Kindern häufig eine Untersuchungsführung in Narkose. Gezielte Konzepte zur Schaffung einer kindgerechten Untersuchungsumgebung in spezialisierten kinderradiologischen Einrichtungen leisten einen Beitrag dazu, die Patientenerfahrung zu optimieren und Narkoseuntersuchungen zu reduzieren.
ABSTRACT
Although chest X-rays are still the standard imaging procedure in pediatric lung diagnostics, cross-sectional imaging techniques are also regularly required for special clinical indications in children and adolescents. Considerable technological advances have significantly expanded the possibilities of lung imaging using CT and MRI. Although radiation exposure and examination times for CT examinations have been drastically reduced, an accurate risk-benefit assessment and consideration of radiation-free alternative methods is still of great importance in terms of radiation safety. In this context, radiation-free MRI is increasingly being used, which can provide functional information in addition to morphological imaging of the lungs. Pediatric cross-sectional imaging, especially the more time-consuming MRI, often requires younger children to be examined under anesthesia. Dedicated concepts for creating a child-friendly examination environment in specialized pediatric radiology departments help to optimize the patient experience and reduce anesthesia examinations.
Publication History
Article published online:
09 August 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG,
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Sandig J, Bührer C, Czernik C. Lungenultraschall in der Neonatologie zur Diagnostik eines Pneumothorax (Teil 2): Eine Praxisanleitung. Z Geburtshilfe Neonatol 2021; 225: 105-110
- 2 Scialanga B. et al Lung Ultrasound to Detect Pneumothorax in Children Evaluated for Acute Chest Pain in the Emergency Department: An Observational Pilot Study. Frontiers in Pediatrics 2022; 10 (10) 812246
- 3 Rapp JB. et al Dual-source computed tomography protocols for the pediatric chest — scan optimization techniques. Pediatr Radiol 2023: 1248-1259
- 4 Veldhoen S. et al Three-dimensional Ultrashort Echotime Magnetic Resonance Imaging for Combined Morphologic and Ventilation Imaging in Pediatric Patients With Pulmonary Disease. Journal of Thoracic Imaging 2021; 36: 43
- 5 Liszewski MC, Ciet P, Winant AJ, Lee EY. Magnetic Resonance Imaging of Pediatric Lungs and Airways: New Paradigm for Practical Daily Clinical Use. J Thorac Imaging 2024; 39: 57-66
- 6 Foo CT, Langton D, Thompson BR, Thien F. Functional lung imaging using novel and emerging MRI techniques. Front Med (Lausanne) 2023; 10: 1060940
- 7 Hart A, Lee EY.. Pediatric Chest Disorders: Practical Imaging Approach to Diagnosis. in Diseases of the Chest, Breast, Heart and Vessels 2019–2022: Diagnostic and Interventional Imaging (eds. Hodler J, Kubik-Huch, R. A. & von Schulthess, G. K.). 107-125 (Springer International Publishing, 2019) DOI: 10.1007/978-3-030-11149-6_10
- 8 Horst KK. et al Potential benefits of photon counting detector computed tomography in pediatric imaging. BJR 2023; 96: 20230189
- 9 Ärzteblatt D.. Ä. G, Redaktion Deutsches. Radiation Protection in Pediatric Radiology (17.06.2011). Deutsches Ärzteblatt. https://www.aerzteblatt.de/int/archive/article?id=93821
- 10 Siegel MJ. et al Comparison of Radiation Dose and Image Quality of Pediatric High-Resolution Chest CT Between Photon-Counting Detector CT and Energy-Integrated Detector CT: A Matched Study. American Journal of Roentgenology 2023; 221: 363-371
- 11 Tschauner S. et al Ultra-low-dose lung multidetector computed tomography in children – Approaching 0.2 millisievert. European Journal of Radiology 2021; 139: 109699
- 12 Tsiflikas I. et al Low dose pediatric chest computed tomography on a photon counting detector system – initial clinical experience. Pediatr Radiol 2023; 53: 1057-1062
- 13 Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. (National Academies Press, 2006). doi:10.17226/11340
- 14 Berrington de Gonzalez A, Pasqual E, Veiga L. Epidemiological studies of CT scans and cancer risk: the state of the science. British Journal of Radiology 2021; 94: 20210471
- 15 Hauptmann M. et al Brain cancer after radiation exposure from CT examinations of children and young adults: results from the EPI-CT cohort study. The Lancet Oncology 2023; 24: 45-53
- 16 Meulepas JM, Hauptmann M, Lubin JH e al. Is there Unmeasured Indication Bias in Radiation-Related Cancer Risk Estimates from Studies of Computed Tomography?. rare 2017; 189: 128-135
- 17 Diagnostische Referenzwerte. Bundesamt für Strahlenschutz https://www.bfs.de/DE/themen/ion/anwendung-medizin/diagnostik/referenzwerte/referenzwerte_node.html
- 18 Wollschläger D. et al Pediatric computed tomography doses in Germany from 2016 to 2018 based on large-scale data collection. European Journal of Radiology 2023; 163: 110832
- 19 Tiddens HAWM, Kuo W, Straten M. et al Paediatric lung imaging: the times they are a-changin’. European Respiratory Review 2018: 27
- 20 Heidenreich JF. et al Lung Function in Patients with Cystic Fibrosis before and during CFTR-Modulator Therapy Using 3 D Ultrashort Echo Time MRI. Radiology 2023; 308: e230084
- 21 Metz C. et al Pulmonary Imaging of Immunocompromised Patients during Hematopoietic Stem Cell Transplantation using Non-Contrast-Enhanced Three-Dimensional Ultrashort Echo Time (3D-UTE) MRI. Rofo 2022; 194: 39-48
- 22 Woods JC. et al Current State of the Art MRI for the Longitudinal Assessment of Cystic Fibrosis. J Magn Reson Imaging 2020; 52: 1306-1320
- 23 Heidenreich JF. et al Functional MRI of the Lungs Using Single Breath-Hold and Self-Navigated Ultrashort Echo Time Sequences. Radiology. 2020 Cardiothoracic Imaging 2 e190162
- 24 Hirsch FW. et al Real-time MRI: a new tool of radiologic imaging in small children. Eur J Pediatr 2023; 182: 3405-3417
- 25 Klimeš F. et al Free-breathing quantification of regional ventilation derived by phase-resolved functional lung (PREFUL) MRI. NMR Biomed 2019; 32: e4088
- 26 Veldhoen S. et al Self-gated Non-Contrast-enhanced Functional Lung MR Imaging for Quantitative Ventilation Assessment in Patients with Cystic Fibrosis. Radiology 2017; 283: 242-251
- 27 Mallory MD. et al Pediatric Sedation/Anesthesia for MRI: Results From the Pediatric Sedation Research Consortium. Journal of Magnetic Resonance Imaging 2023; 57: 1106-1113
- 28 Antonov NK. et al Feed and Wrap MRI Technique in Infants. Clin Pediatr (Phila) 2017; 56: 1095-1103
- 29 Ashmore J. et al A Free Virtual Reality Experience to Prepare Pediatric Patients for Magnetic Resonance Imaging: Cross-Sectional Questionnaire Study. JMIR Pediatrics and Parenting 2019; 02: e11684