Aktuelle Dermatologie 2024; 50(08/09): 390-396
DOI: 10.1055/a-2333-8946
Übersicht

3D-Technologien in der dermatologischen Lehre

3D technologies in dermatology teaching
Alexander Schneller
1   Klinik für Dermatologie und Allergologie, Universitätsklinikum Augsburg, Augsburg, Deutschland
2   Institut für Digitale Medizin, Universitätsklinikum Augsburg, Augsburg, Deutschland
,
Julia Welzel
1   Klinik für Dermatologie und Allergologie, Universitätsklinikum Augsburg, Augsburg, Deutschland
,
Ludwig Christian Hinske
2   Institut für Digitale Medizin, Universitätsklinikum Augsburg, Augsburg, Deutschland
,
Sandra Schuh
1   Klinik für Dermatologie und Allergologie, Universitätsklinikum Augsburg, Augsburg, Deutschland
› Author Affiliations

Zusammenfassung

3D-Technologien sind in vielen Industriezweigen präsent und gewinnen auch in der Medizin zunehmend an Bedeutung. In Forschung, Lehre und Patientenbehandlung finden 3D-Visualisierung und 3D-Druck vielfältig Anwendung. In der Dermatologie besteht hier Entwicklungspotenzial. Besonders die dermatologische Lehre nutzt nach wie vor überwiegend zweidimensionale Abbildungen von Hautkrankheiten in Lehrbüchern und Vorlesungen. Dieser Übersichtsartikel schlägt einen Bogen von etablierten historischen dreidimensionalen Lehrmedien in der Dermatologie zu modernen 3D-Verfahren und ihrer Anwendung in verschiedenen dermatologischen Lehrformaten. Virtual und Augmented Reality sowie 3D-Druck können immersive Lernerfahrungen bieten und werden vereinzelt bereits mit Erfolg angewandt. Innovationen in dem Gebiet der 3D-Medien bieten spannende Ausblicke auf potenzielle Anwendungsgebiete.

Abstract

3D technologies are present in many industries and are also gaining increasing importance in medicine. 3D visualization and 3D printing are widely used in research, education, and patient care. In the field of dermatology, there is potential for development. Particularly, dermatological education still predominantly uses two-dimensional images of skin diseases in textbooks and lectures. This review article bridges the gap between established historical three-dimensional teaching aids in dermatology and modern 3D techniques and their application in various dermatological teaching formats. Virtual and augmented reality, as well as 3D printing, can provide immersive learning experiences and are already being successfully applied in some cases. Innovations in the field of 3D media offer exciting prospects for potential future applications.



Publication History

Article published online:
20 August 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Bhatti AQ, Wahab A, Sindi W. An overview of 3D laser scanning techniques and application on digitization of historical structures. Innov Infrastruct Solut 2021; 6: 1-9
  • 2 Kostidi E, Nikitakos N. Exploring the Potential of 3D Printing of the Spare Parts Supply Chain in the Maritime Industry: Marine Navigation and Safety of Sea Transportation. In: Weintrit A, Neumann T. Safety of Sea Transportation. Proceedings of the 12th International Conference on Marine Navigation and Safety of Sea Transportation (TransNav 2017), June 21–23, 2017, Gdynia, Poland. Milton: CRC Press; 2017: 171-178
  • 3 Bazli M, Ashrafi H, Rajabipour A. et al. 3D printing for remote housing: Benefits and challenges. Autom Constr 2023; 148: 104772
  • 4 Ciprian FA, Tapîrdea A, Feier A. et al. Virtual reality in the automotive field in industry 4.0. Mater Today Proc 2021; 45: 4177-4182
  • 5 Raux S, Kohler R, Garin C. et al. Tridimensional trunk surface acquisition for brace manufacturing in idiopathic scoliosis. Eur Spine J 2014; 23 (Suppl. 4) S419-S423
  • 6 Polonio-Alcalá E, Rabionet M, Guerra AJ. et al. Screening of Additive Manufactured Scaffolds Designs for Triple Negative Breast Cancer 3D Cell Culture and Stem-Like Expansion. Int J Mol Sci 2018; 19
  • 7 Illmann CF, Ghadiry-Tavi R, Hosking M. et al. Utility of 3D printed cardiac models in congenital heart disease: a scoping review. Heart 2020; 106: 1631-1637
  • 8 Schneller A, Sitaru S, Biedermann T. et al. Die dritte Dimension: Chancen von 3-D-Technologien in der Dermatologie. Dermatologie 2023; 74: 379-381
  • 9 Foresti R, Fornasari A, Bianchini Massoni C. et al. Surgical Medical Education via 3D Bioprinting: Modular System for Endovascular Training. Bioengineering 2024; 11: 197
  • 10 Láinez Ramos-Bossini AJ, López Cornejo D, Redruello Guerrero P. et al. The Educational Impact of Radiology in Anatomy Teaching: A Field Study Using Cross-Sectional Imaging and 3D Printing for the Study of the Spine. Acad Radiol 2024; 31: 329-337
  • 11 Cercenelli L, Stefano A de, Billi AM. et al. AEducaAR, Anatomical Education in Augmented Reality: A Pilot Experience of an Innovative Educational Tool Combining AR Technology and 3D Printing. Int J Environ Res Public Health 2022; 19: 1024
  • 12 Clanner-Engelshofen BM, Frommherz L, Mitwalli M. et al. 3D-Druck- und Silikonmodelle der Primäreffloreszenzen für die dermatologische Lehre im Fernstudium. J Dtsch Dermatol Ges 2022; 20: 177-184
  • 13 Bauer D, Lörwald AC, Wüst S. et al. Development, production and evaluation of 2-dimensional transfer tattoos to simulate skin conditions in health professions education. BMC Med Educ 2021; 21: 350
  • 14 Nebel S, Beege M, Schneider S. et al. A Review of Photogrammetry and Photorealistic 3D Models in Education From a Psychological Perspective. Front Educ 2020; 5: 530126
  • 15 Javaid M, Haleem A, Pratap Singh R. et al. Industrial perspectives of 3D scanning: Features, roles and itʼs analytical applications. Sens Int 2021; 2: 100114
  • 16 Pieper S, Halle M, Kikinis R. 3D Slicer. In: 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano (IEEE Cat No. 04EX821). IEEE; null.
  • 17 Mendonça CJA, Da Guimarães RMR, Pontim CE. et al. An Overview of 3D Anatomical Model Printing in Orthopedic Trauma Surgery. J Multidiscip Healthc 2023; 16: 875-887
  • 18 Chytas D, Johnson EO, Piagkou M. et al. The role of augmented reality in Anatomical education: An overview. Ann Anat 2020; 229: 151463
  • 19 Neri I, Cercenelli L, Marcuccio M. et al. Dissecting human anatomy learning process through anatomical education with augmented reality: AEducAR 2.0, an updated interdisciplinary study. Anat Sci Educ 2024; 17: 693-711
  • 20 Chadha U, Abrol A, Vora NP. et al. Performance evaluation of 3D printing technologies: a review, recent advances, current challenges, and future directions. Prog Addit Manuf 2022; 7: 853-886
  • 21 Schnalke T. A brief history of the dermatologic moulage in Europe. Part I. The origin. Int J Dermatol 1988; 27: 134-139
  • 22 Geiges M. Das Zürcher Moulagenmuseum – Die heutige Bedeutung in der Dermatologie, Medizingeschichte und öffentlichkeit. J Dtsch Dermatol Ges 2007; 5: 953-957
  • 23 Joshi R. Moulages in dermatology-venereology. Indian J Dermatol Venereol Leprol 2010; 76: 434-438
  • 24 Marchetti MA, Nazir ZH, Nanda JK. et al. 3D Whole-body skin imaging for automated melanoma detection. J Eur Acad Dermatol Venereol 2023; 37: 945-950
  • 25 Pellitteri F, Scisciola F, Cremonini F. et al. Accuracy of 3D facial scans: a comparison of three different scanning system in an in vivo study. Prog Orthod 2023; 24: 44
  • 26 Muralidharan V, Tran MM, Barrios L. et al. Best Practices for Research in Virtual and Augmented Reality in Dermatology. J Invest Dermatol 2024; 144: 17-23
  • 27 Junga A, Schmidle P, Pielage L. et al. New horizons in dermatological education: Skin cancer screening with virtual reality. J Eur Acad Dermatol Venereol. 2024
  • 28 Mergen M, Junga A, Risse B. et al. Immersive training of clinical decision making with AI driven virtual patients – a new VR platform called medical tr.AI.ning. GMS J Med Educ 2023; 40: Doc18
  • 29 Norman G. Simulation comes of age. Advances in health sciences education: theory and practice 2014; 19: 143-146
  • 30 Wainman B, Pukas G, Wolak L. et al. The Critical Role of Stereopsis in Virtual and Mixed Reality Learning Environments. Anatomical sciences education 2020; 13: 401-412