Informationen aus Orthodontie & Kieferorthopädie 2024; 56(04): 225-231
DOI: 10.1055/a-2342-9167
Übersichtsartikel

3D-Druck palatinal verankerter Apparaturen: eine Übersicht

3D Printing of Palatally Anchored Appliances: An Overview
Katharina Mücke
1   Universitätsklinikum Düsseldorf
,
Maximilian Küffer
1   Universitätsklinikum Düsseldorf
,
Benedict Wilmes
1   Universitätsklinikum Düsseldorf
,
Kathrin Becker
2   Charité – Universitätsmedizin Berlin
› Author Affiliations

Zusammenfassung

Der 3D-Druck, oder auch additive Fertigung genannt, hat die Kieferorthopädie erheblich verändert. Indem er die Herstellung präziser, individuell angepasster Apparaturen ermöglicht, verbessert der 3D-Druck sowohl die Effizienz der Behandlung als auch den Patientenkomfort. In den letzten Jahren haben sich insbesondere der Einsatz von Computer-Aided Design (CAD)/Computer-Aided Manufacturing (CAM)-Systemen und Metall-3D-Druckverfahren, wie das selektive Laserschmelzen (SLM), durchgesetzt. In der Kieferorthopädie ermöglichen diese Technologien, festsitzende Apparaturen (Brackets[1], Lingualretainer [2], Hyrax-Expander[3], skelettal verankerte Apparaturen[4]), herausnehmbare Apparaturen [5] und komplexe, individualisierte Apparaturen (multipurpose Apparaturen) digital zu planen und direkt zu drucken, teilweise sogar bereits ohne die Notwendigkeit physischer Modelle [6].

Abstract

3D printing, also known as additive manufacturing, has significantly influenced orthodontics. By enabling the production of precise, customized appliances, 3D printing improves both the efficiency of treatment and patient comfort. In recent years, the use of computer-aided design (CAD)/computer-aided manufacturing (CAM) systems and metal 3D printing processes, such as selective laser melting (SLM), have become well established in orthodontics. These technologies enable us to digitally plan and directly print fixed appliances (brackets [1], lingual retainers [2], Hyrax expanders [3], skeletally anchored appliances [4]), removable appliances [5] and complex, individualized appliances (multipurpose appliances), in some cases even without the need for physical models [6].



Publication History

Article published online:
02 December 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Luay J, Rossouw PE, Dimitrios M. et al. A Comparative Assessment of the Bonding Characteristics of Three-Dimensional Custom-Printed Polycrystalline Alumina Brackets and Conventional Brackets Im Internet doi:10.3390/app14020924
  • 2 Firlej M, Zaborowicz K, Zaborowicz M. et al. Mechanical Properties of 3D Printed Orthodontic Retainers. International journal of environmental research and public health 2022; 19
  • 3 Graf S, Vasudavan S, Wilmes B. CAD-CAM design and 3-dimensional printing of mini-implant retained orthodontic appliances. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 2018; 154: 877-882
  • 4 Küffer M, Drescher D, Becker K. Application of the Digital Workflow in Orofacial Orthopedics and Orthodontics: Printed Appliances with Skeletal Anchorage. Applied Sciences 2022; 12: 3820
  • 5 Al Mortadi N, Eggbeer D, Lewis J. et al. CAD/CAM/AM applications in the manufacture of dental appliances. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 2012; 142: 727-733
  • 6 Graf S, Cornelis MA, Hauber Gameiro G. et al. Computer-aided design and manufacture of hyrax devices: Can we really go digital?. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 2017; 152: 870-874
  • 7 Hull CW. Apparatus for production of three-dimensional objects by stereolithography. In: Google Patents. 1986
  • 8 Kalyan MVDS, Harish K, Leeladhar N. Latest trends in Additive manufacturing. 2021; 1104
  • 9 Singh A, Singh H. Metal Additive Manufacturing: From History to Applications. In: Khan MA, Jappes JTW, Hrsg. Innovations in Additive Manufacturing. Cham: Springer International Publishing; 2022: 3-32
  • 10 Graf S, Vasudavan S, Wilmes B. CAD/CAM Metallic Printing of a Skeletally Anchored Upper Molar Distalizer. Journal of clinical orthodontics: JCO 2020; 54: 140-150
  • 11 Jedliński M, Mazur M, Grocholewicz K. et al. 3D Scanners in Orthodontics-Current Knowledge and Future Perspectives-A Systematic Review. International journal of environmental research and public health 2021; 18
  • 12 Ender A, Mehl A. Full arch scans: Conventional versus digital impressions – An in-vitro study [Ganzkieferaufnahmen: Konventionelle versus digitale Abformtechnik – Eine In-vitro-Untersuchung]. International journal of computerized dentistry 2011; 14: 11-21
  • 13 Hellmann D, Krumpa S, Trautner P. et al. Comparison of the accuracy of different types of bite recordings – an in vitro study. Clinical Oral Investigations 2024; 28
  • 14 Willemsen K, Nizak R, Noordmans HJ. et al. Challenges in the design and regulatory approval of 3D-printed surgical implants: a two-case series. The Lancet Digital health 2019; 1: e163-e171
  • 15 Maria CD, Lantada AD, Pietro LD. et al. Entwicklung von Open-Source-Medizinprodukten – Open-Source-Medizinprodukte: Konzept, Trends und Herausforderungen auf dem Weg zu Verteilungsgerechtigkeit bei Gesundheitstechnologien. Springer International Publishing; 2023
  • 16 Graf S. Clinical guidelines for direct printed metal orthodontic appliances. Seminars in Orthodontics 24: 461-469
  • 17 Graf S, Tarraf NE, Kravitz ND. Three-dimensional metal printed orthodontic laboratory appliances. Seminars in Orthodontics 2021; 27: 189-193
  • 18 Graf S, Thakkar D, Hansa I. et al. 3D Metal Printing in Orthodontics: Current Trends, Biomaterials, Workflows and Clinical Implications. Seminars in Orthodontics 2023; 29: 34-42
  • 19 Lee YC, Zheng J, Kuo J. et al. Binder Jetting of Custom Silicone Powder for Direct Three-Dimensional Printing of Maxillofacial Prostheses. 3D Printing and Additive Manufacturing 2022; 9: 520-534
  • 20 Blunk H, Seibel A. Design guidelines for metal binder jetting. Progress in Additive Manufacturing 2023; 9: 725-732
  • 21 Nancharaiah T. A Review Paper on Metal 3D Printing Technology. In: Patnaik A, Kozeschnik E, Kukshal V eds, Advances in Materials Processing and Manufacturing Applications. Singapore: Springer Singapore; 2021: 251-259
  • 22 Graf S, Tarraf NE. Advantages and disadvantages of the three-dimensional metal printed orthodontic appliances. Journal of the World Federation of Orthodontists 2022; 11: 197-201
  • 23 Institut J. Konsolidierte Version der Verordnung (EU) 2017/745 über Medizinprodukte (MDR) vom 5. April 2017. In; Stand: 15.09.2024
  • 24 Baden-Württemberg L. Europäische Medizinprodukteverordnung (EU-MDR) - Herstellung von Sonderanfertigungen Fragen und Antworten (FAQ). In
  • 25 Xue L, Atli KC, Zhang C. et al. Laser Powder Bed Fusion of Defect-Free NiTi Shape Memory Alloy Parts with Superior Tensile Superelasticity. Acta Materialia 2022; 229
  • 26 Bichu YM, Hansa I, Bichu AY. et al. Applications of artificial intelligence and machine learning in orthodontics: a scoping review. Progress in Orthodontics 2021; 22