Subscribe to RSS
DOI: 10.1055/a-2351-4900
Attempts on Fluorinative Transformation of Selected Functionalized Cycloalkene Scaffolds through Aziridination/Aziridine-Opening Protocol
The authors gratefully acknowledge financial support from the Nemzeti Kutatási Fejlesztési és Innovációs H (National Research, Development and Innovation Office of Hungary, NKFIH/OTKA FK 145394 and K 142266). Project no. RRF-2.3.1-21-2022-00015 has been implemented with the support provided by the European Union. This work was supported by the János Bolyai Research Scholarship to M.N. of the Magyar Tudományos Akadémia (Hungarian Academy of Sciences).
![](https://www.thieme-connect.de/media/synlett/202504/lookinside/thumbnails/st-2024-l0160-l_10-1055_a-2351-4900-1.jpg)
Abstract
Studies on the transformations of some functionalized cycloalkene derivatives through their ring olefin-bond aziridination/aziridine opening with fluoride are presented. The selected model compounds submitted to fluorinative functionalization were an amino ester and diesters with a cyclohexene skeleton as well as a cyclopentene-fused β-lactam. Functionalization proceeded across a substrate-directed diastereoselective olefin-bond aziridination, followed by fluoride-mediated aziridine opening or intramolecular lactonization giving some fluorinated amino ester or amino lactone derivatives.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2351-4900.
- Supporting Information
Publication History
Received: 22 May 2024
Accepted after revision: 24 June 2024
Accepted Manuscript online:
24 June 2024
Article published online:
08 July 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 2a Han J, Remete AM, Dobson LS, Kiss L, Izawa K, Moriwaki H, Soloshonok VA, O’Hagan D. J. Fluor. Chem. 2020; 239: 109639
- 2b Han J, Kiss L, Mei H, Remete AM, Ponikvar-Svet M, Sedgwick DM, Roman R, Fustero S, Moriwaki H, Soloshonok VA. Chem. Rev. 2021; 121: 4678
- 3a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 3b Dykstra KD, Ichiishi N, Krska SW, Richardson PF. Emerging Fluorination Methods in Organic Chemistry Relevant for Life Science Application, In: Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, and Agrochemicals. Haufe G, Leroux FG. Academic Press; London: 2019: 1-90
- 4a He J, Li Z, Dhawan G, Zhang W, Sorochinsky AE, Butler G, Soloshonok VA, Han J. Chin. Chem. Lett. 2023; 34: 107578
- 4b Sheikhi N, Bahraminejad M, Saeedi M, Mirfazli SS. Eur. J. Med. Chem. 2023; 260: 115758
- 4c Wang Y.-T, Yang P.-C, Zhang Y.-F, Sun J.-F. Eur. J. Med. Chem. 2024; 265: 116124
- 4d Ali S, Zhou J. Eur. J. Med. Chem. 2023; 256: 115476
- 5a Aradi K, Kiss L. Chem. Eur. J. 2023; 29: e202203499
- 5b Aradi K, Kiss L. Synthesis 2023; 55: 1834
- 5c Remete AM, Nonn M, Novák TT, Csányi D, Kiss L. Chem. Asian J. 2022; 17: 1
- 5d Remete AM, Nonn M, Volk B, Kiss L. Synthesis 2022; 54: 3753
- 5e Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JA. S, Toste FD. Chem. Rev. 2018; 118: 3887
- 5f Escorihuela J, Fustero S. Chem. Rec. 2023; 23: e202200262
- 5g Uno H, Kawai K, Araki T, Shiro M, Shibata N. Angew. Chem. 2022; 61: e202117635
- 6a Haufe G. Chem. Rec. 2023; 23: e202300140
- 6b Umemoto T, Singh RP, Xu Y, Saito N. J. Am. Chem. Soc. 2010; 132: 18199
- 6c L’Heureux A, Beaulieu F, Bennett C, Bill DR, Clayton S, LaFlamme F, Mirmehrabi M, Tadayon S, Tovell D, Couturier M. J. Org. Chem. 2010; 75: 3401
- 6d Nonn M, Paizs C, Kiss L. Chem. Rec. 2022; 22: e202200130
- 6e Kazmierczak M, Bilska-Markowska M. Eur. J. Org. Chem. 2021; 5585
- 6f Kazmierczak M, Dutkiewicz G, Koroniak H. Org. Biomol. Chem. 2022; 20: 5615
- 6g Campbell MG, Ritter T. Org. Process Res. Dev. 2014; 18: 474
- 6h Halder R, Ritter T. J. Org. Chem. 2021; 86: 13873
- 7a Nonn M, Remete AM, Fülöp F, Kiss L. Tetrahedron 2017; 73: 5461
- 7b Dank C, Ielo L. Org. Biomol. Chem. 2023; 21: 4553
- 8a Kiss L, Remete AM. Eur. J. Org. Chem. 2019; 5574
- 8b Li D, Shen C, Si Z, Liu L. Angew. Chem. Int. Ed. 2023; 62: e202310283
- 9 Nonn M, Kiss L, Forró E, Sillanpää R, Fülöp F. Tetrahedron 2014; 70: 8511
- 10 Nonn M, Kiss L, Haukka M, Fustero S, Fülöp F. Org. Lett. 2015; 17: 1074
- 11 Remete AM, Novák TT, Nonn M, Haukka M, Fülöp F, Kiss L. Beilstein J. Org. Chem. 2020; 16: 2562
- 12a Kiss L, Mándity IM, Fülöp F. Amino Acids 2017; 49: 1441
- 12b Kiss L, Fülöp F. Chem. Rev. 2014; 114: 1116
- 12c Kiss L, Fülöp F. Chem. Rec. 2018; 18: 266
- 12d Wang Z, Liu H, Jiang T, Huang H. Org. Chem. Front. 2024; 11: 864
- 12e Mollari L, Valle-Amores MA, Martínez-Gualda AM, Marzo L, Fraile A, Aleman J. Chem. Commun. 2022; 58: 1334
- 12f Nonn M, Drahos L, Kiss L. ChemSelect 2023; 8: e202303898
- 12g Kiss L, Ouchakour L, Nonn M, Remete AM. Synlett 2022; 33: 307
- 12h Liu S, Gellman SH. J. Org. Chem. 2020; 85: 1718
- 12i Martinek TA, Fülöp F. Chem. Soc. Res. 2012; 41: 687
- 12j Kiss L, Forró E, Fülöp F. Tetrahedron 2012; 68: 4438
- 12k Imani Z, Guillot R, Declerck V, Aitken DJ. J. Org. Chem. 2020; 85: 6165
- 13a General Procedure for Aziridination Reactions The appropriate starting material 1 mmol was dissolved in 10 mL MeCN and then cooled down to 0 °C. After that, 1.2 equiv (1.2 mmol, 338 mg) chloramine-T·3H2O and 15 mol% PTAB (0.15 mmol, 56 mg) were added. The mixture was stirred to the appropriate time and then was cooled down. When the reaction was completed, MeCN was evaporated from the mixture and the residue was dissolved in 30 mL EtOAc. The mixture was then washed with 3 ( 10 mL water, and the organic and water phases were separated. The organic phase was dried with anhydrous Na2SO4, filtered, and evaporated under vacuum. Purification of the crude product by column chromatography on silica gel afforded the products as oils or solids.
- 13b Benzyl (1S*,3R*,4S*,6R*)-4-[(tert-Butoxycarbonyl)amino]-7-tosyl-7-azabicyclo[4.1.0]heptane-3-carboxylate (11) Prepared according to aziridination general procedure from benzyl (1R*,6S*)-6-[(tert-butoxycarbonyl)amino]cyclohex-3-ene-1-carboxylate (331 mg, 1.00 mmol) for 5 h. Purification of the crude product by column chromatography on silica gel afforded the product as white-yellowish solid 235 mg; yield 50%. R f = 0.20 (H/E n-hexane/EtOAc, 3:1); mp 50–52 °C. 1H NMR (500 MHz, CDCl3): δ = 7.76 (d, J = 8.3 Hz, 2 H), 7.39–7.28 (m, 7 H), 5.48 (d, J = 10.1 Hz, 1 H), 5.09 (d, J = 12.2 Hz, 1 H), 4.94 (d, J = 12.3 Hz, 1 H), 3.98 (d, J = 8.0 Hz, 1 H), 3.07 (td, J = 4.9, 2.4 Hz, 1 H), 2.98 (ddd, J = 6.8, 5.2, 1.1 Hz, 1 H), 2.58–2.54 (m, 1 H), 2.54–2.50 (m, 1 H), 2.42 (s, 3 H), 2.16–2.06 (m, 2 H), 2.01 (dt, J = 15.1, 7.4 Hz, 1 H), 1.40 (s, 9 H). 13C NMR (75 MHz, CDCl3): δ = 172.4, 155.0, 144.6, 135.3, 129.8, 128.5, 128.3, 128.2, 127.4, 126.3, 79.4, 66.8, 45.2, 40.3, 38.8, 38.3, 28.3, 27.1, 23.9, 21.6. HRMS: m/z calcd for C26H32N2O6SNa+ [M + Na]+: 523.1879; found: 523.1878.
- 13c General Procedure for Fluorination Reactions The appropriate starting material 1 mmol was dissolved in 15 mL anhydrous 1,4-dioxane, and the temperature was set to the boiling point of the solvent. Then 4 equiv fluorinating reagent (either Xtal-Fluor-E 4.00 mmol, 916 mg or Xtal-Fluor-M 4.00 mmol, 972 mg) was added and the reaction mixture was stirred to the appropriate time. When the reaction was completed, the flask was cooled down to room temperature and 15 mL EtOAc were added to the mixture. It was poured to a separation funnel and washed with 3 ( 15 mL saturated NaHCO3 solution. The organic phase was dried with anhydrous Na2SO4, filtered, and evaporated under vacuum. Purification of the crude product by column chromatography on silica gel afforded the products as oils or solids.
- 13d Benzyl (1R*,5S*,6R*,8R*)-8-Fluoro-3-oxo-2-tosyl-2,4-diazabicyclo[3.3.1]nonane-6-carboxylate (13) Prepared according to the general procedure of fluorination reactions from benzyl (1R*,3R*,4S*,6S*)-4-[(tert-butoxycarbonyl)amino]-7-tosyl-7-azabicyclo[4.1.0]heptane-3-carboxylate 250 mg (0.50 mmol) for 35 min and 4.00 equiv (2.00 mmol, 486 mg) Xtal-Fluor-M were used as fluorinating agent. Purification of the crude product by column chromatography on silica gel afforded the product as orange-yellowish solid 60 mg; yield 33%. R f = 0.50 (H/E n-hexane/EtOAc, 1:1); mp 170 °C. 1H NMR (300 MHz, CDCl3): δ = 7.86 (d, J = 8.4 Hz, 2 H), 7.40–7.25 (m, 4 H), 5.54 (d, J = 3.2 Hz, 1 H), 5.11 (d, J = 4.7 Hz, 2 H), 4.98 (d, J = 3.3 Hz, 1 H), 4.82 (t, J = 3.5 Hz, 1 H), 3.98 (s, 1 H), 2.85 (ddd, J = 12.9, 4.7, 2.0 Hz, 1 H), 2.41 (s, 3 H), 2.31 (d, J = 2.8 Hz, 1 H), 2.26 (t, J = 2.4 Hz, 1 H), 1.86 (dtd, J = 10.0, 5.6, 2.3 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 171.9, 151.3, 144.7, 136.6, 135.2, 129.3, 128.7, 128.6, 128.3, 89.0, 86.7, 67.0, 51.5, 51.0, 46.5, 42.5, 24.5, 24.2, 21.6. 19F NMR (282 MHz, CDCl3): δ = –183.6. HRMS: m/z calcd for C22H24FN2O5S+ [M + H]+: 447.1390; found: 447.1389.
- 14a Yamamoto Y, Kodama S, Mishimura R, Nomoto A, Ueshima M, Ogava A. J. Org. Chem. 2021; 86: 11571
- 14b Nonn M, Kiss L. Asian J. Org. Chem. 2023; 12: e202300526
- 14c Deketelaere S, Nguyen TV, Stevens CV, D’hooghe M. ChemistryOpen 2017; 6: 301
- 14d Veinberg G, Potorocina I, Vorona M. Curr. Med. Chem. 2013; 21: 393
- 14e Llarrull LI, Testero SA, Fisher J, Mobashery S. Curr. Opin. Microbiol. 2010; 13: 551
- 14f da Silveira PintoL. S, Alves VascincelosT. R, Gomes CR. B, de Souza VN. Curr. Org. Chem. 2020; 24: 473
- 14g Carosso S, Liu R, Miller PA, Hecker SJ, Glinka T, Miller MJ. J. Med. Chem. 2017; 60: 8933
- 14h Decuyper L, Jukič M, Sosič I, Amoroso AM, Verlaine O, Joris B, Gobec S, D’hooghe M. Chem. Asian J. 2020; 15: 51