Subscribe to RSS
DOI: 10.1055/a-2373-0255
A Formal [3+3] Annulation of Morita–Baylis–Hillman Ketones to Construct Pyrimidobenzothiazoles
Ministry of Education, India, (Grant/Award Number: MoE-STARS/ STARS-2/2023-1017) and Science and Engineering Research Board, (Grant / Award Number: CRG/2022/008471).
Dedicated to Prof. H. Ila on the occasion of her 80th birthday
Abstract
A calcium triflate-promoted reaction of Morita–Baylis–Hillman (MBH) ketones, derived by the oxidation of MBH adducts, with 2-aminobenzothiazoles resulted in the formation of 4H-pyrimido[2,1-b]benzothiazoles. Formally, the transformation represents a [3+3] annulation and presumably proceeds via an aza-Michael addition followed by an intramolecular condensation. The reaction is completely regioselective and tolerates a wide range of substrates to afford a variety of analogues of the fused heterocycle in good yields.
Key words
Morita–Baylis–Hillman reaction - pyrimidobenzothiazole - [3+3] annulation - MBH ketone - 2-aminobenzothiazoleSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2373-0255.
- Supporting Information
Publication History
Received: 31 May 2024
Accepted after revision: 23 July 2024
Accepted Manuscript online:
25 July 2024
Article published online:
21 August 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Morita K, Suzuki Z, Hirose H. Bull. Chem. Soc. Jpn. 1968; 41: 2815
- 1b Baylis AB, Hillman ME. D. German patent 2155113, 1972 Chem. Abstr. 1972, 77, 34174q
- 2a Basavaiah D, Reddy BS, Badsara SS. Chem. Rev. 2010; 110: 5447
- 2b Basavaiah D, Naganaboina RT. New J. Chem. 2018; 42: 14036
- 2c Ma G.-N, Jiang J.-J, Shi M, Wei Y. Chem. Commun. 2009; 5496
- 2d Basavaiah D, Veeraraghavaiah G. Chem. Soc. Rev. 2012; 41: 68
- 2e Wei Y, Shi M. Chem. Rev. 2013; 113: 6659
- 2f The Chemistry of the Morita–Baylis–Hillman Reaction . Shi M, Wang F, Zhao M.-X, Wei Y. RSC Publishing; London: 2011
- 2g Masson G, Housseman C, Zhu J. Angew. Chem. Int. Ed. 2007; 46: 4614
- 2h Pellissier H. Tetrahedron 2017; 73: 2831
- 3a Bhowmik S, Batra S. Curr. Org. Chem. 2014; 18: 3078
- 3b Xie P, Huang Y. Org. Biomol. Chem. 2015; 13: 8578
- 3c Lima-Junior CG, Vasconcellos ML. A. A. Bioorg. Med. Chem. 2012; 20: 3954
- 3d Rios R. Catal. Sci. Technol. 2012; 2: 267
- 3e Singh V, Batra S. Tetrahedron 2008; 64: 4511
- 3f Liu T.-Y, Xie M, Chen Y.-C. Chem. Soc. Rev. 2012; 41: 4101
- 3g Bharadwaj KC. RSC Adv. 2015; 5: 75923
- 3h Calcatelli A, Cherubini-Celli A, Carletti E, Companyo X. Synthesis 2020; 52: 2922
- 3i Rodriguez P, Duran J, Gisbert M, Companyo X. Synlett 2024; 35
- 4a Lawrence NJ, Crump JP, McGown AT, Hadfield JA. Tetrahedron Lett. 2001; 42: 3939
- 4b Martin H, Hoffmann R, Gassner A, Eggert U. Chem. Ber. 1991; 124: 2475
- 4c Bikshapathi R, Prathima PS, Rao VJ. New J. Chem. 2016; 40: 10300
- 5a Corey EJ, Munroe JE. J. Am. Chem. Soc. 1982; 104: 6129
- 5b Yamauchi M, Honda Y, Matsuki N, Watanabe T, Date K, Hiramatsu H. J. Org. Chem. 1996; 61: 2719
- 5c Nenajdenko VG, Statsuk AV, Balenkova ES. Tetrahedron 2000; 56: 6549
- 5d Yadav JS, Reddy BV. S, Singh AP, Basak AK. Tetrahedron Lett. 2007; 48: 4169
- 5e Yadav LD. S, Awasthi C. Tetrahedron Lett. 2009; 50: 715
- 5f Tan J.-N, Li H, Gu Y. Green Chem. 2010; 12: 1772
- 5g Zhou R, Wang J, Yu J, He Z. J. Org. Chem. 2013; 78: 10596
- 5h Gomes RC, Barcelos RC, Rodrigues MT, Santos HJ, Coelho F. ChemistrySelect 2017; 2: 926
- 5i Silva TS, Zeoly LA, Coelho F. J. Org. Chem. 2020; 85: 5438 ; and references cited therein
- 6a Jha AK, Kumari R, Easwar S. Org. Lett. 2019; 21: 8191
- 6b Jha AK, Sarita, Easwar S. Tetrahedron Lett. 2021; 69: 152971
- 6c Jha AK, Kumari A, Easwar S. Chem. Commun. 2020; 56: 2949
- 6d Sharma S, Jha AK, Easwar S. Org. Chem. Front. 2024; 11: 3137
- 6e Jha AK, Kumari R, Easwar S. J. Org. Chem. 2022; 87: 5760
- 6f Kumari R, Jha AK, Khan AG. H, Easwar S. J. Org. Chem. 2024; 89: 7263
- 7 For a recent review, see: Dadmal TL, Katre SD, Mandewale MC, Kumbhare RM. New J. Chem. 2018; 42: 776
- 8a Nalawade S, Deshmukh V, Chaudhari S. J. Pharm. Res. 2013; 7: 433
- 8b Bhoi MN, Borad MA, Pithawala EA, Patel HD. Arab. J. Chem. 2019; 12: 3799
- 8c Sahu PK, Sahu PK, Gupta SK, Thavaselvam D, Agarwal DD. Eur. J. Med. Chem. 2012; 54: 366
- 8d Gabr MT, El-Gohary NS, El-Bendary ER, El-Kerdawy MM. Med. Chem. Res. 2015; 24: 860
- 8e Sahu PK, Sahu PK, Lal J. Med. Chem. Res. 2012; 21: 3826
- 9 Gandhi D, Kalal P, Prajapat P, Agarwal DK, Agarwal S. Comb. Chem. High Throughput Screen. 2018; 21: 236
- 10 Agarwal DK, Sahiba N, Sethiya A, Soni J, Teli P, Agarwal S, Goyal PK. Mini. Rev. Org. Chem. 2021; 18: 1012
- 11 Landreau C, Deniaud D, Evain M, Reliquet A, Meslin JC. J. Chem. Soc., Perkin Trans. 1 2002; 741
- 12 Bao M, Jiang B, Wang H, Li L. Tetrahedron 2016; 72: 1011
- 13 Zhang Z, Wang Z, Li Z. Org. Lett. 2022; 24: 5491
- 14 As suggested by a reviewer in the initial review of the manuscript.
- 15 Gong S.-S, Kong R, Zheng C, Fan C, Wang C, Yang D.-Z, Chen Z.-Z, Duo S, Pu S, Sun Q. J. Mater. Chem. C 2021; 9: 10029
- 16 Latorre A, Saez JA, Rodríguez S, Gonzalez FV. Tetrahedron 2014; 70: 97
- 17 Kumari R, Jha AK, Goyal S, Maan R, Reddy SR, Easwar S. J. Org. Chem. 2023; 88: 2023
For reviews, see:
For reviews, see:
For examples, see:
For examples, see: