Subscribe to RSS
DOI: 10.1055/a-2377-0230
Cobalt(II)-Catalyzed Proficient Synthesis of Enaminones from Aryl Alkenes and Amines
S.S. and K.M.D. thank CSIR and UGC, respectively, for JRF and SRF fellowships.
Dedicated to Professor B. C. Ranu on his 75th birthday.
Abstract
A simple, cost-effective, and modular strategy has been developed to synthesize synthetically and pharmaceutically active enaminones by oxidative amination of aryl alkenes with amines and CHCl3, using tert-butyl hydroperoxide as an oxidant. We describe the synthesis of enaminones from vinyl arenes and sterically hindered N,N-diisopropylethylamine (DIPEA) by employing an Earth-abundant cobalt salt as a catalyst within a very short reaction period for the first time. Furthermore, nitrogen- and oxygen-containing heterocyclic compounds have been synthesized from these highly functionalized enaminones. Moreover, various control experiments, such as radical trapping reaction, along with a Hammett analysis with various types of substituents on the styrene ring unraveled the detailed mechanism of this reaction pathway.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2377-0230.
- Supporting Information
Publication History
Received: 18 June 2024
Accepted after revision: 31 July 2024
Accepted Manuscript online:
31 July 2024
Article published online:
22 August 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Abbas M, Mostafa BB. Bioorg. Med. Chem. 2005; 13: 6133
- 1b Cox DS, Scott KR, Gao H, Raje S, Eddington ND. J. Pharm. Sci. 2001; 90: 1540
- 2 Abdulla R F, Morgan LA. Synth. Commun. 1982; 12: 351
- 3a Zhang Z.-H, Zhang X.-N, Mo L.-P, Li Y.-X, Ma F.-P. Green Chem. 2012; 14: 1502
- 3b Siddiqui ZN, Farooq F. J. Mol. Catal. A: Chem. 2012; 363: 451
- 4a Netto BA. D, Lapis AA. M, Bernd AB, Russowsky D. Tetrahedron 2009; 65: 2484
- 4b Cvetovich RJ, Pipik B, Hartner FW, Grabowski EJ. Tetrahedron Lett. 2003; 44: 5867
- 5a Liu J.-Y, Cao G.-E, Xu W, Cao J, Wang W.-L. Appl. Organomet. Chem. 2010; 24: 685
- 5b Burkhardt ER, Bergman RG, Heathcock CH. Organometallics 1990; 9: 30
- 5c Cámpora J, Maya CM, Palma P, Carmona E, Gutiérrez-Puebla E, Ruiz C. J. Am. Chem. Soc. 2003; 125: 1482
- 6 Braibante HT. S, Braibante ME. F, Rosso GB, Oriques DA. J. Braz. Chem. Soc. 2003; 14: 994
- 7 Brandt CA, da Silva AC. M. P, Pancote CG, Brito CL, da Silveira MA. B. Synthesis 2004; 1557
- 8 Ueno S, Shimizu R, Kuwano R. Angew. Chem. Int. Ed. 2009; 48: 4543
- 9 Schuppe AW, Cabrera JM, McGeoch CL. B, Newhouse TR. Tetrahedron 2017; 73: 3643
- 10 Shi W, Sun S, Wu M, Catano B, Li W, Wang J, Guo H, Xing Y. Tetrahedron Lett. 2015; 56: 468
- 11 Li M, Fang D, Geng F, Dai X. Tetrahedron Lett. 2017; 58: 4747
- 12 Kang Y.-W, Cho YJ, Han SJ, Jang H.-Y. Org. Lett. 2016; 18: 272
- 13 Neff RK, Su Y.-L, Liu S, Rosado M, Zhang X, Doyle MP. J. Am. Chem. Soc. 2019; 141: 16643
- 14 Zhang J, Zhou P, Yin A, Zhang S, Liu W. J. Org. Chem. 2021; 86: 8980
- 15a Pal A, Das KM, Sau S, Thakur A. Chem. Asian J. 2023; 18: e202300755
- 15b Pal A, Das KM, Thakur A. J. Org. Chem. 2023; 88: 8955
- 16a Sau S, Das KM, Mondal B, Thakur A. J. Org. Chem. 2024; 89: 7095
- 16b Das TN, Dhanasekaran T, Alfassi ZB, Neta P. J. Phys. Chem. A 1998; 102: 280
- 17 Pal A, Thakur A. Org. Biomol. Chem. 2022; 20: 8977
- 18 Enaminones 4a–q; General Procedure An oven-dried round-bottomed flask equipped with a stirrer bar was charged with CoCl2·6H2O (0.1 equiv, 0.1 mmol, 23.8 mg), DIPEA (3 equiv, 3 mmol, 0.52 mL), TBHP (3 equiv, 3 mmol, 0.29 mL), and toluene (1 mL). CHCl3 (3 equiv, 3 mmol, 0.24 mL) was added to the mixture, followed by the appropriate styrene derivative 1 (1.0 equiv, 1.0 mmol). The mixture was stirred for 3 h in a preheated oil bath at 60 °C, then cooled to r.t. H2O was added, and the mixture and extracted with CH2Cl2 (3 × 10 mL) and H2O. The organic phase was washed with brine, dried (Na2SO4), and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel (100–200 mesh), EtOAc–PE (3:7 to 4:6)].
- 19 3-[(2E)-3-(Diisopropylamino)prop-2-enoyl]benzonitrile (4d) Purified by column chromatography (silica gel, 30% EtOAc–PE) to give a yellow oil; yield: 204.92 mg (0.80 mmol, 80%). 1H NMR (300 MHz, CDCl3): δ = 8.14–8.11 (m, 2 H), 7.98 (d, J = 12 Hz, 1 H), 7.72 (d, J = 9 Hz, 1 H), 7.52 (t, J = 7.5 Hz, 1 H), 5.70 (d, J = 12 Hz, 1 H), 3.33 (q, J = 7 Hz, 2 H), 1.32–1.27 (m, 12 H). 13C{1H} NMR (75 MHz, CDCl3): δ = 185.9, 151.7, 144.8, 141.8, 133.9, 131.8, 131.3, 129.5, 129.2, 112.4, 90.9, 57.7, 52.5, 41.6, 22.1, 12.7. Anal. Calcd for C16H20N2O: C, 74.97; H, 7.86; N, 10.93. Found: C, 74.71; H, 7.60; N, 11.06. (1E)-1-(Diisopropylamino)hept-1-en-3-one (4g) Purified by column chromatography (silica gel, 20% EtOAc–PE) to give a yellow oil; yield: 133.44 mg (0.65 mmol, 65%). 1H NMR (300 MHz, CDCl3): δ = 7.50 (d, J = 9 Hz, 1 H), 4.62 (d, J = 9 Hz, 1 H), 2.29 (t, J = 6 Hz, 2 H), 1.44–1.17 (m, 21 H). 13C{1H} NMR (75 MHz, CDCl3): δ = 170.3, 146.8, 84.9, 71.4, 68.9, 51.0, 37.3, 28.8, 27.6, 22.7, 14.1. Anal. Calcd for C13H25NO: C, 73.88; H, 11.92; N, 6.63. Found: C, 73.55; H, 11.65; N, 6.44. 3-[(2E)-3-(Diethylamino)prop-2-enoyl]benzonitrile (4o) Purified by column chromatography (silica gel, 40% EtOAc–PE) to give a yellow liquid; yield: 159.80 mg (0.70 mmol, 70%). 1H NMR (300 MHz, CDCl3): δ = 8.15–8.11 (m, 2 H), 7.90 (d, J = 12 Hz, 1 H), 7.73–7.70 (m, 1 H), 7.53 (t, J = 7.5 Hz, 1 H), 5.70 (d, J = 12 Hz, 1 H), 3.43–3.31 (m, 4 H), 1.28 (s, 6 H). 13C {1H} NMR (75 MHz, CDCl3): δ = 185.9, 153.5, 141.8, 133.9, 131.8, 131.3, 129.2, 118.9, 112.4, 90.9, 51.0, 43.2, 14.9, 14.2. HRMS (ESI): m/z [M + H]+ calcd for C14H17N2O; 229.1341; found: 229.1340. (2E)-3-(Diethylamino)-1-(3-nitrophenyl)prop-2-en-1-one (4q) Purified by column chromatography (silica gel, 30% EtOAc–PE) to give a yellow liquid; yield: 176.28 mg (0.71 mmol, 71%). 1H NMR (300 MHz, CDCl3): δ = 8.67 (t, J = 3 Hz, 1 H), 8.31–8.23 (m, 2 H), 7.90 (d, J = 15 Hz, 1 H), 7.59 (t, J = 9 Hz, 1 H), 5.76 (d, J = 12 Hz, 1 H), 3.41–3.35 (m, 4 H), 1.28 (t, J = 6 Hz, 6 H). 13C {1H} NMR (75 MHz, CDCl3): δ = 185.6, 153.6, 148.3, 142.4, 133.6, 129.4, 125.4, 122.4, 90.8, 50.9, 43.2, 14.9, 11.8. Anal. Calcd for C13H16N2O3: C, 62.89; H, 6.50; N, 11.28. Found: C, 62.60; H, 6.22; N, 11.01.
- 20a Yadav N, Khan J, Tyagi A, Singh S, Hazra CK. J. Org. Chem. 2022; 87: 6886
- 20b Das KM, Pal A, Surya TL, Roy L, Thakur A. Chem. Eur. J. 2023; 30: e202303776
- 21 Ying J, Liu T, Liu Y, Wang J.-P. Org. Lett. 2022; 24: 2404
- 22 Jiang T.-S, Zhou Y, Dai L, Liu X, Zhang X. Tetrahedron Lett. 2019; 60: 2078
- 23a Chen C, Tan H, Liu B, Yue C, Liu W. Org. Chem. Front. 2018; 5: 3143
- 23b Chen C, Li Y, Pan Y, Duan L, Liu W. Org. Chem. Front. 2019; 6: 2032
- 24a Pan C, Huang B, Hu W, Feng X, Yu J.-T. J. Org. Chem. 2016; 81: 2087
- 24b Wang Q.-Q, Wang Z.-X, Zhang X.-Y, Fan X.-S. Asian J. Org. Chem. 2017; 6: 1445
- 24c Chudasama V, Fitzmaurice RJ, Caddick S. Nat. Chem. 2010; 2: 592