Synthesis
DOI: 10.1055/a-2385-4073
short review

Biocatalytic Dearomatisation Reactions

,
Nicholas J. Turner
T.G. is supported by a Doctoral Training Partnerships (DTP) award from the Biotechnology and Biological Sciences Research Council (BBSRC) (BB/T008725/1).


Abstract

Biocatalytic dearomatisation offers the advantages of high chemo-, regio- and stereoselectivity over chemical strategies. Mono- and dioxygenases with dearomatising properties are already well-established tools for the synthesis of natural products and beyond. Herein, we review investigations of protein sequence–activity relationships, as well as protein-engineering approaches that have been employed to expand the substrate scope of biocatalysts and achieve product regio- and stereodiversity. Thus, oxidative dearomatising biocatalysts offer an increasingly diverse toolbox for the synthesis of asymmetric, oxidised cyclic scaffolds, as illustrated through selected examples of biocatalytic applications in synthetic routes towards natural products and derivatives thereof. Reductases with dearomatising properties have been less well investigated, so we review recent mechanistic findings which, henceforth, allow for expanding applications of this class of biocatalysts. Additionally, chemoenzymatic strategies have been developed to overcome the limitations of purely biocatalytic or chemical dearomatisation approaches. We highlight examples of those combination strategies for the synthesis of asymmetric privileged motifs.

1 Introduction

2 Oxidative Biocatalytic Dearomatisation

3 Reductive Biocatalytic Dearomatisation

4 Chemoenzymatic Dearomatisation

5 Conclusion



Publication History

Received: 21 June 2024

Accepted after revision: 13 August 2024

Accepted Manuscript online:
13 August 2024

Article published online:
20 September 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Chen Y, Rosenkranz C, Hirte S, Kirchmair J. Nat. Prod. Rep. 2022; 39: 1544
  • 2 Lewis SE. Asymmetric Dearomatization Under Enzymatic Conditions. In Asymmetric Dearomatization Reactions. You S.-L. Wiley-VCH; Weinheim: 2016: 279
    • 3a Birch AJ, Linde AK, Radom L. J. Am. Chem. Soc. 1980; 102: 3370
    • 3b Birch AJ. Pure Appl. Chem. 1996; 68: 553
    • 3c Roche SP, Porco JA. Angew. Chem. Int. Ed. 2011; 50: 4068
    • 3d Pigge FC. Dearomatization Reactions: An Overview. In Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds. Mortier J. John Wiley & Sons; Hoboken: 2015: 399
    • 4a Morrow GW, Schwind B. Synth. Commun. 1995; 25: 269
    • 4b Schultz AG, Antoulinakis EG. J. Org. Chem. 1996; 61: 4555
    • 4c Pettus LH, Van De Water RW, Pettus TR. R. Org. Lett. 2001; 3: 905
    • 4d Dong S, Zhu J, Porco JA. J. Am. Chem. Soc. 2008; 130: 2738
    • 5a Wells AS, Finch GL, Michels PC, Wong JW. Org. Process Res. Dev. 2012; 16: 1986
    • 5b Wells AS, Wong JW, Michels PC, Entwistle DA, Fandrick K, Finch GL, Goswami A, Lee H, Mix S, Moody TS, Pang L, Sato RK, Turner NJ, Watson TJ. Org. Process Res. Dev. 2016; 20: 594
    • 5c Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Angew. Chem. Int. Ed. 2021; 60: 88
    • 7a Protein Engineering Handbook, Vol. 1. Lutz S, Bornscheuer UT. Wiley-VCH; Weinheim: 2009
    • 7b Protein Engineering . Kaumaya P. InTech; Rijeka, Croatia: 2012
    • 7c Woodley JM. Curr. Opin. Chem. Biol. 2013; 17: 310
    • 7d Sinha R, Shukla P. Curr. Protein Pept. Sci. 2019; 20: 398
    • 7e Casamajo AR, Yu Y, Schnepel C, Morrill C, Barker R, Levy CW, Finnigan J, Spelling V, Westerlund K, Petchey M, Sheppard RJ, Lewis RJ, Falcioni F, Hayes MA, Turner NJ. J. Am. Chem. Soc. 2023; 145: 22041
    • 8a Wohlgemuth R. Curr. Opin. Biotechnol. 2010; 21: 713
    • 8b Hughes G, Lewis JC. Chem. Rev. 2018; 118: 1
    • 8c Devine PN, Howard RM, Kumar R, Thompson MP, Truppo MD, Turner NJ. Nat. Rev. Chem. 2018; 2: 409
    • 8d Bell EL, Finnigan W, France SP, Green AP, Hayes MA, Hepworth LJ, Lovelock SL, Niikura H, Osuna S, Romero E, Ryan KS, Turner NJ, Flitsch SL. Nat. Rev. Methods Primers 2021; 1: 46
    • 8e Alcántara AR, de María PD, Littlechild JA, Schürmann M, Sheldon RA, Wohlgemuth R. ChemSusChem 2022; 15: e202102709
    • 8f Kaspar F, Schallmey A. Curr. Opin. Biotechnol. 2022; 77: 102759
    • 9a Boyd DR, Sharma ND, Byrne B, Hand MV, Malone JF, Sheldrake GN, Blacker J, Dalton H. J. Chem. Soc., Perkin Trans. 1 1998; 1935
    • 9b Chakrabarty S, Romero EO, Pyser JB, Yazarians JA, Narayan AR. H. Acc. Chem. Res. 2021; 54: 1374
  • 10 Huijbers MM, Montersino S, Westphal AH, Tischler D, van Berkel WJ. H. Arch. Biochem. Biophys. 2014; 544: 2
  • 11 Chenault HK, Whitesides GM. Appl. Biochem. Biotechnol. 1987; 14: 147
  • 12 Bastos F. dM, dos Santos AG, Jones JJr, Oestreicher EG, Pinto GF, Paiva LM. C. Biotechnol. Tech. 1999; 13: 661
  • 13 Sib A, Gulder TA. M. Angew. Chem. Int. Ed. 2018; 57: 14650
  • 14 al Fahad A, Abood A, Fisch KM, Osipow A, Davison J, Avramović M, Butts CP, Piel J, Simpson TJ, Cox RJ. Chem. Sci. 2014; 5: 523
  • 15 Sib A, Gulder TA. M. Angew. Chem. Int. Ed. 2017; 56: 12888
  • 16 Bringmann G, Lang G, Gulder TA. M, Tsuruta H, Mühlbacher J, Maksimenka K, Steffens S, Schaumann K, Stöhr R, Wiese J, Imhoff JF, Perović-Ottstadt S, Boreiko O, Müller WE. G. Tetrahedron 2005; 61: 7252
    • 17a Dockrey SA. B, Lukowski AL, Becker MR, Narayan AR. H. Nat. Chem. 2018; 10: 119
    • 17b Dockrey SA. B, Suh CE, Benítez AR, Wymore T, Brooks CL. III, Narayan AR. H. ACS Cent. Sci. 2019; 5: 1010
    • 18a Davison J, al Fahad A, Cai M, Song Z, Yehia SY, Lazarus CM, Bailey AM, Simpson TJ, Cox RJ. Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 7642
    • 18b Abood A, Al-Fahad A, Scott A, Hosny AE.-D. M. S, Hashem AM, Fattah AM. A, Race PR, Simpson TJ, Cox RJ. RSC Adv. 2015; 5: 49987
  • 19 Benítez AR, Tweedy S, Dockrey SA. B, Lukowski AL, Wymore T, Khare D, Brooks CL. III, Palfey BA, Smith JL, Narayan AR. H. ACS Catal. 2019; 9: 3633
  • 20 Dockrey SA. B, Doyon TJ, Perkins JC, Narayan AR. H. Chem. Biol. Drug Des. 2019; 93: 1207
    • 21a Zabala AO, Xu W, Chooi YH, Tang Y. Chem. Biol. 2012; 19: 1049
    • 21b Pavesi C, Flon V, Mann S, Leleu S, Prado S, Franck X. Nat. Prod. Rep. 2021; 38: 1058
    • 22a Chiang Y.-M, Szewczyk E, Davidson AD, Keller N, Oakley BR, Wang CC. C. J. Am. Chem. Soc. 2009; 131: 2965
    • 22b Somoza AD, Lee K.-H, Chiang Y.-M, Oakley BR, Wang CC. C. Org. Lett. 2012; 14: 972
  • 23 Pyser JB, Dockrey SA. B, Benítez AR, Joyce LA, Wiscons RA, Smith JL, Narayan AR. H. J. Am. Chem. Soc. 2019; 141: 18551
  • 24 Chiang CH, Wymore T, Benítez AR, Hussain A, Smith JL, Brooks CL. III, Narayan AR. H. Proc. Natl. Acad. Sci. U. S. A. 2023; 120: e2218248120
    • 25a Wackett LP. Enzyme Microb. Technol. 2002; 31: 577
    • 25b Boyd DR, Bugg TD. Org. Biomol. Chem. 2006; 4: 181
  • 26 Johnson RA. Microbial Arene Oxidations . In Organic Reactions, Vol. 63. Overman LE. John Wiley & Sons; Hoboken: 2004: 117
  • 28 Bedard K, Hudlický T. Enzymatic Dihydroxylation of Aromatic Compounds: Nature’s Unique Reaction and Its Impact on the Synthesis of Natural Products. In Strategies and Tactics in Organic Synthesis, Vol. 15. Harmata M. Elsevier; Amsterdam: 2021: 53
  • 29 Wackett LP, Kwart LD, Gibson DT. Biochemistry 1988; 27: 1360
  • 30 Lange SJ, Que LJr. Curr. Opin. Chem. Biol. 1998; 2: 159
  • 31 Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S. Structure 1998; 6: 571
  • 32 Parales RE, Parales JV, Gibson DT. J. Bacteriol. 1999; 181: 1831
  • 33 Carredano E, Karlsson A, Kauppi B, Choudhury D, Parales RE, Parales JV, Lee K, Gibson DT, Eklund H, Ramaswamy S. J. Mol. Biol. 2000; 296: 701
    • 34a Pavel EG, Martins LJ, Ellis WR, Solomon EI. Chem. Biol. 1994; 1: 173
    • 34b Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S. Science 2003; 299: 1039
    • 34c Ashikawa Y, Fujimoto Z, Usami Y, Inoue K, Noguchi H, Yamane H, Nojiri H. BMC Struct. Biol. 2012; 12: 15
    • 35a Ferraro DJ, Gakhar L, Ramaswamy S. Biochem. Biophys. Res. Commun. 2005; 338: 175
    • 35b Rivard BS, Rogers MS, Marell DJ, Neibergall MB, Chakrabarty S, Cramer CJ, Lipscomb JD. Biochemistry 2015; 54: 4652
    • 35c Wang Y, Li J, Liu A. J. Biol. Inorg. Chem. 2017; 22: 395
    • 35d Solomon EI, DeWeese DE, Babicz JT. Biochemistry 2021; 60: 3497
    • 36a Gibson DT, Koch JR, Kallio RE. Biochemistry 1968; 7: 2653
    • 36b Boyd DR, Sheldrake GN. Nat. Prod. Rep. 1998; 15: 309
    • 36c Furukawa K, Suenaga H, Goto M. J. Bacteriol. 2004; 186: 5189
  • 37 Nam J.-W, Nojiri H, Yoshida T, Habe H, Yamane H, Omori T. Biosci., Biotechnol., Biochem. 2001; 65: 254
  • 38 Gibson DT, Koch JR, Schuld CL, Kallio RE. Biochemistry 1968; 7: 3795
    • 39a Gibson DT, Hensley M, Yoshioka H, Mabry TJ. Biochemistry 1970; 9: 1626
    • 39b Boyd DR, Sharma ND, Bowers NI, Duffy J, Harrison JS, Dalton H. J. Chem. Soc., Perkin Trans. 1 2000; 1345
    • 39c Ballard DG. H, Courtis A, Shirley IM, Taylor SC. Macromolecules 1988; 21: 294
    • 39d Zylstra GJ, Gibson DT. J. Biol. Chem. 1989; 264: 14940
    • 39e Boyd DR, Sharma ND, Haughey SA, Kennedy MA, McMurray BT, Sheldrake GN, Allen CC. R, Dalton H, Sproule K. J. Chem. Soc., Perkin Trans. 1 1998; 1929
  • 40 Boyd DR, Sharma ND, Hand MV, Groocock MR, Kerley NA, Dalton H, Chima J, Sheldrake GN. J. Chem. Soc., Chem. Commun. 1993; 974
  • 41 Boyd DR, Dorrity MR. J, Hand MV, Malone JF, Sharma ND, Dalton H, Gray DJ, Sheldrake GN. J. Am. Chem. Soc. 1991; 113: 666
    • 42a Klečka GM, Gibson DT. Biochem. J. 1979; 180: 639
    • 42b Gibson DT, Resnick SM, Lee K, Brand JM, Torok DS, Wackett LP, Schocken MJ, Haigler BE. J. Bacteriol. 1995; 177: 2615
    • 42c Resnick SM, Lee K, Gibson DT. J. Ind. Microbiol. Biotechnol. 1996; 17: 438
    • 43a Gibson DT, Roberts RL, Wells MC, Kobal VM. Biochem. Biophys. Res. Commun. 1973; 50: 211
    • 43b Mondello FJ. J. Bacteriol. 1989; 171: 1725
    • 43c Haddock JD, Nadim LM, Gibson DT. J. Bacteriol. 1993; 175: 395
    • 43d Gibson DT. J. Ind. Microbiol. Biotechnol. 1999; 23: 284
    • 43e Seeger M, Zielinski M, Timmis KN, Hofer B. Appl. Environ. Microbiol. 1999; 65: 3614
    • 44a Boyd DR, Sharma ND, Hempenstall F, Kennedy MA, Malone JF, Allen CC. R. J. Org. Chem. 1999; 64: 4005
    • 44b Boyd DR, Sharma ND, Agarwal R, Resnick SM, Schocken MJ, Gibson DT, Sayer JM, Yagi H, Jerina DM. J. Chem. Soc., Perkin Trans. 1 1997; 1715
    • 44c Boyd DR, Sharma ND, Harrison JS, Kennedy MA, Allen CC. R, Gibson DT. J. Chem. Soc., Perkin Trans. 1 2001; 1264
    • 44d Misawa N, Shindo K, Takahashi H, Suenaga H, Iguchi K, Okazaki H, Harazama S, Furukawa K. Tetrahedron 2002; 58: 9605
    • 45a Reiner AM, Hegeman GD. Biochemistry 1971; 10: 2530
    • 45b Rossiter JT, Williams SR, Cass AE. G, Ribbons DW. Tetrahedron Lett. 1987; 28: 5173
    • 45c Myers AG, Siegel DR, Buzard DJ, Charest MG. Org. Lett. 2001; 3: 2923
    • 45d Griffen JA, Le Coz AM, Kociok-Köhn G, Khan MA, Stewart AJ, Lewis SE. Org. Biomol. Chem. 2011; 9: 3920
  • 46 Boyd DR, Sharma ND, Barr SA. J. Am. Chem. Soc. 1994; 116: 1147
    • 47a Jerina DM, Selander H, Yagi H, Wells MC, Davey JF, Mahadevan V, Gibson DT. J. Am. Chem. Soc. 1976; 98: 5988
    • 47b Parales RE, Lee K, Resnick SM, Jiang H, Lessner DJ, Gibson DT. J. Bacteriol. 2000; 182: 1641
    • 47c Parales RE, Resnick SM, Yu C.-L, Boyd DR, Sharma ND, Gibson DT. J. Bacteriol. 2000; 182: 5495
  • 48 Koreeda M, Akhtar MN, Boyd DR, Neill JD, Gibson DT, Jerina DM. J. Org. Chem. 1978; 43: 1023
    • 49a Yu C.-L, Parales RE, Gibson DT. J. Ind. Microbiol. Biotechnol. 2001; 27: 94
    • 49b Parales RE. J. Ind. Microbiol. Biotechnol. 2003; 30: 271
  • 50 Vila MA, Umpiérrez D, Veiga N, Seoane G, Carrera I, Rodríguez Giordano S. Adv. Synth. Catal. 2017; 359: 2149
  • 51 Wissner JL, Escobedo-Hinojosa W, Vogel A, Hauer B. J. Biotechnol. 2021; 326: 37
  • 52 Wissner JL, Schelle JT, Escobedo-Hinojosa W, Vogel A, Hauer B. Adv. Synth. Catal. 2021; 363: 4905
  • 53 Friemann R, Lee K, Brown EN, Gibson DT, Eklund H, Ramaswamy S. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009; 65: 24
    • 54a Suenaga H, Watanabe T, Sato M, Ngadiman Ngadiman. Furukawa K. 2002; 184: 3682
    • 54b Suenaga H, Goto M, Furukawa K. Appl. Microbiol. Biotechnol. 2006; 71: 168
    • 54c Vezina J, Barriault D, Sylvestre M. J. Bacteriol. 2007; 189: 779
    • 54d Mohammadi M, Viger JF, Kumar P, Barriault D, Bolin JT, Sylvestre M. J. Biol. Chem. 2011; 286: 27612
    • 54e Kumar P, Mohammadi M, Dhindwal S, Pham TT, Bolin JT, Sylvestre M. Biochem. Biophys. Res. Commun. 2012; 421: 757
  • 55 Osifalujo EA, Preston-Herrera C, Betts PC, Satterwhite LR, Froese JT. ChemistrySelect 2022; 7: e202200753
  • 56 Preston-Herrera C, Jackson AS, Bachmann BO, Froese JT. Org. Biomol. Chem. 2021; 19: 775
  • 57 Osifalujo EA, Rutkowski BN, Satterwhite LR, Betts PC, Nkosi AK, Froese JT. Catal. Sci. Technol. 2023; 13: 3784
  • 58 Betts PC, Blakely SJ, Rutkowski BN, Bender B, Klingler C, Froese JT. Biotechnol. Bioeng. 2024; 1
    • 59a Endoma MA, Bui VP, Hansen J, Hudlický T. Org. Process Res. Dev. 2002; 6: 525
    • 59b Vila MA, Brovetto M, Gamenara D, Bracco P, Zinola G, Seoane G, Rodríguez S, Carrera I. J. Mol. Catal. B: Enzym. 2013; 96: 14
    • 59c Wissner JL, Escobedo-Hinojosa W, Heinemann PM, Hunold A, Hauer B. Methods for the Detection and Analysis of Dioxygenase Catalyzed Dihydroxylation in Mutant Derived Libraries. In Enzyme Engineering and Evolution: Specific Enzyme Applications. Tawfik DS. Methods in Enzymology, Volume 644; Academic Press; Cambridge: 2020: 63
    • 59d Farr T, Wissner JL, Hauer B. MethodsX 2021; 8: 101323
    • 59e Schelle JT, Lepoittevin W, Hauer B. Chem. Ing. Tech. 2023; 95: 607
    • 60a Boll M, Fuchs G. Eur. J. Biochem. 1995; 234: 921
    • 60b Egland PG, Pelletier DA, Dispensa M, Gibson J, Harwood CS. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 6484
    • 60c Boll M, Fuchs G. Biol. Chem. 2005; 386: 989
    • 60d Boll M, Löffler C, Morris BE, Kung JW. Environ. Microbiol. 2014; 16: 612
    • 61a Boll M. J. Mol. Microbiol. Biotechnol. 2005; 10: 132
    • 61b Weinert T, Huwiler SG, Kung JW, Weidenweber S, Hellwig P, Stärk H.-J, Biskup T, Weber S, Cotelesage JJ. H, George GN, Ermler U, Boll M. Nat. Chem. Biol. 2015; 11: 586
    • 61c Willistein M, Bechtel DF, Müller CS, Demmer U, Heimann L, Kayastha K, Schünemann V, Pierik AJ, Ullmann GM, Ermler U, Boll M. Nat. Commun. 2019; 10: 2074
    • 62a Buckel W, Keese R. Angew. Chem. Int. Ed. 1995; 34: 1502
    • 62b Thiele B, Rieder O, Golding BT, Müller M, Boll M. J. Am. Chem. Soc. 2008; 130: 14050
    • 62c Willistein M, Haas J, Fuchs J, Estelmann S, Ferlaino S, Müller M, Lüdeke S, Boll M. Chem. Eur. J. 2018; 24: 12505
    • 63a Boll M, Laempe D, Eisenreich W, Bacher A, Mittelberger T, Heinze J, Fuchs G. J. Biol. Chem. 2000; 275: 21889
    • 63b Kung JW, Baumann S, von Bergen M, Müller M, Hagedoorn P.-L, Hagen WR, Boll M. J. Am. Chem. Soc. 2010; 132: 9850
    • 63c Eberlein C, Estelmann S, Seifert J, von Bergen M, Müller M, Meckenstock RU, Boll M. Mol. Microbiol. 2013; 88: 1032
  • 64 Koch J, Eisenreich W, Bacher A, Fuchs G. Eur. J. Biochem. 1993; 211: 649
  • 65 Möbitz H, Boll M. Biochemistry 2002; 41: 1752
  • 66 Boll M. Biochim. Biophys. Acta 2005; 1707: 34
    • 67a Fuchs G, Boll M, Heider J. Nat. Rev. Microbiol. 2011; 9: 803
    • 67b Buckel W, Thauer RK. Biochim. Biophys. Acta 2013; 1827: 94
  • 68 Estelmann S, Blank I, Feldmann A, Boll M. Mol. Microbiol. 2015; 95: 162
    • 70a Tschech A, Schink B. Arch. Microbiol. 1985; 143: 52
    • 70b Kluge C, Tschech A, Fuchs G. Arch. Microbiol. 1990; 155: 68
  • 71 Reichenbecher W, Philipp B, Suter MJ, Schink B. Arch. Microbiol. 2000; 173: 206
    • 72a Krumholz LR, Crawford RL, Hemling ME, Bryant MP. J. Bacteriol. 1987; 169: 1886
    • 72b Haddock JD, Ferry JG. J. Bacteriol. 1993; 175: 669
    • 72c Haddock JD, Ferry JG. J. Biol. Chem. 1989; 264: 4423
  • 73 Conradt D, Hermann B, Gerhardt S, Einsle O, Müller M. Angew. Chem. Int. Ed. 2016; 55: 15531
    • 74a Bell AA, Stipanovic RD, Puhalla JE. Tetrahedron 1976; 32: 1353
    • 74b Wheeler MH. Exp. Mycol. 1982; 6: 171
    • 74c Viviani F, Gaudry M, Marquet A. J. Chem. Soc., Perkin Trans. 1 1990; 1255
    • 74d Ichinose K, Kiyono J, Ebizuka Y, Sankawa U. Chem. Pharm. Bull. 1993; 41: 2015
    • 74e Vidal-Cros A, Viviani F, Labesse G, Boccara M, Gaudry M. Eur. J. Biochem. 1994; 219: 985
    • 74f Thompson JE, Fahnestock S, Farrall L, Liao D.-I, Valent B, Jordan DB. J. Biol. Chem. 2000; 275: 34867
    • 74g Liao D.-I, Thompson JE, Fahnestock S, Valent B, Jordan DB. Biochemistry 2001; 40: 8696
    • 75a Schätzle MA, Flemming S, Husain SM, Richter M, Günther S, Müller M. Angew. Chem. Int. Ed. 2012; 51: 2643
    • 75b Husain SM, Schätzle MA, Röhr C, Lüdeke S, Müller M. Org. Lett. 2012; 14: 3600
    • 75c Husain SM, Schätzle MA, Lüdeke S, Müller M. Angew. Chem. Int. Ed. 2014; 53: 9806
    • 75d Conradt D, Schätzle MA, Husain SM, Müller M. ChemCatChem 2015; 7: 3116
  • 76 Zhang W, Li H, Younes SH. H, de Santos PG, Tieves F, Grogan G, Pabst M, Alcalde M, Whitwood AC, Hollmann F. ACS Catal. 2021; 11: 2644
  • 77 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 78a Busacca CA, Fandrick DR, Song JJ, Senanayake CH. Transition Metal Catalysis in the Pharmaceutical Industry. In Applications of Transition Metal Catalysis in Drug Discovery and Development: An Industrial Perspective. Crawley ML, Trost BM. John Wiley & Sons; Hoboken: 2012: 1
    • 78b Schafer P, Palacin T, Sidera M, Fletcher SP. Nat. Commun. 2017; 8: 15762
    • 79a Harawa V, Thorpe TW, Marshall JR, Sangster JJ, Gilio AK, Pirvu L, Heath RS, Angelastro A, Finnigan JD, Charnock SJ, Nafie JW, Grogan G, Whitehead RC, Turner NJ. J. Am. Chem. Soc. 2022; 144: 21088
    • 79b List B, Turberg M. Synfacts 2023; 19: 0293
    • 79c Stepan AF, Kuhl N. Synfacts 2023; 19: 0310
  • 80 Baldwin JE, Bischoff L, Claridge TD. W, Heupel FA, Spring DR, Whitehead RC. Tetrahedron 1997; 53: 2271
    • 81a Heath RS, Pontini M, Bechi B, Turner NJ. ChemCatChem 2014; 6: 996
    • 81b Thorpe TW, Marshall JR, Harawa V, Ruscoe RE, Cuetos A, Finnigan JD, Angelastro A, Heath RS, Parmeggiani F, Charnock SJ, Howard RM, Kumar R, Daniels DS. B, Grogan G, Turner NJ. Nature 2022; 604: 86
  • 82 Marshall JR, Yao P, Montgomery SL, Finnigan JD, Thorpe TW, Palmer RB, Mangas-Sanchez J, Duncan RA. M, Heath RS, Graham KM, Cook DJ, Charnock SJ, Turner NJ. Nat. Chem. 2021; 13: 140
  • 83 Finnigan W, Hepworth LJ, Flitsch SL, Turner NJ. Nat. Catal. 2021; 4: 98