Synthesis 2024; 56(23): 3630-3636
DOI: 10.1055/a-2385-4181
paper

Facile Synthesis of Silanols via Cesium Carbonate Catalyzed Hydrosilanes with Water

Yunfeng Bai
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. of China
,
Miaomiao Chai
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. of China
,
Cong Ma
b   State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
,
Zhengang Han
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. of China
› Author Affiliations
This work was financially supported by the Natural Science Foundation of China (Grant Nos. 21904106, 22174111, and 22174110), the China National Petroleum Corporation (CNPC) Innovation Fund (2020D-5007-0404), and China Postdoctoral Science Foundation (2022M713244).


Abstract

The demand for green and efficient methods for preparing silanols is significant. In this study, we employed inexpensive cesium carbonate as a catalyst to facilitate the hydrolysis of hydrosilanes for silanol production. This approach offers numerous advantages, including mild reaction conditions, broad substrate compatibility, straightforward post-treatment procedures, high yields, and scalability to gram-level synthesis. Our method demonstrated compatibility with diverse organosilanes bearing alkyl, aryl, alkynyl, and heterocyclic substituents, including sterically hindered variants. The significance of these findings extends beyond scientific inquiry, offering practical utility in the synthesis of silanols.

Supporting Information



Publication History

Received: 23 June 2024

Accepted after revision: 13 August 2024

Accepted Manuscript online:
13 August 2024

Article published online:
12 September 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Lickiss PD. Adv. Inorg. Chem. 1995; 42: 147
    • 1b Murugavel R, Walawalkar MG, Dan M, Roesky HW, Rao CN. R. Acc. Chem. Res. 2004; 37: 763
    • 1c Chandrasekhar V, Boomishankar R, Nagendran S. Chem. Rev. 2004; 104: 5847
    • 1d Zhou Q, Yan S, Han CC, Xie P, Zhang R. Adv. Mater. 2008; 20: 2970
    • 1e Jeon M, Han J, Park J. ACS Catal. 2012; 2: 1539
    • 2a Denmark SE, Regens CS. Acc. Chem. Res. 2008; 41: 1486
    • 2b Kozakiewicz J. Surf. Coat. Int. 1998; 81: 435
    • 2c Denmark SE, Ambrosi A. Org. Process Res. Dev. 2015; 19: 982
    • 3a Diemoz KM, Hein JE, Wilson SO, Fettinger JC, Franz AK. J. Org. Chem. 2017; 82: 6738
    • 3b Schafer AG, Wieting JM, Fisher TJ, Mattson AE. Angew. Chem. Int. Ed. 2013; 52: 11321
    • 3c Min T, Fettinger JC, Franz AK. ACS Catal. 2012; 2: 1661
    • 4a Huang C, Chattopadhyay B, Gevorgyan V. J. Am. Chem. Soc. 2011; 133: 12406
    • 4b Mewald M, Schiffner JA, Oestreich M. Angew. Chem. Int. Ed. 2012; 51: 1763
    • 4c Parasram M, Gevorgyan V. Acc. Chem. Res. 2017; 50: 2038
  • 6 Beckmann J, Dakternieks D, Duthie A, Larchin ML, Tiekink ER. T. Appl. Organomet. Chem. 2003; 17: 52
  • 7 Jia W.-L, Liu Q.-D, Song DT, Wang S. Organometallics 2003; 22: 321
  • 8 Lickiss PD, Lucas R. J. Organomet. Chem. 1996; 521: 229
  • 9 Valliant-Saunders K, Gunn E, Shelton GR, Hrovat DA, Borden WT, Mayer JM. Inorg. Chem. 2007; 46: 5212
  • 10 Sommer LH, Ulland LA, Parker GA. J. Am. Chem. Soc. 1972; 94: 3469
  • 11 Adam W, Mello R, Curci R. Angew. Chem. Int. Ed. 1990; 29: 890
  • 12 Spialter L, Pazdernik L, Bernstein S, Swansiger WA, Buell GR, Freeburger ME. J. Am. Chem. Soc. 1971; 93: 5682
    • 13a Adam W, Mitchell CM, Saha-Moller CR. Weichold O. J. Am. Chem. Soc. 1999; 121: 2097
    • 13b Ishimoto R, Kamata K, Mizuno N. Angew. Chem. Int. Ed. 2009; 121: 9062
    • 13c Li S, Li H, Tung CH, Liu L. ACS Catal. 2022; 12: 9143
    • 13d Wang K, Zhou J, Jiang Y, Zhang M, Wang C, Xue D, Tang D, Sun H, Xiao J, Li C. Angew. Chem. Int. Ed. 2019; 58: 6380
    • 13e Arzumanyan AV, Goncharova IK, Novikov RA, Milenin SA, Boldyrev KL, Solyev PN, Tkachev YV, Volodin AD, Smol’yakov AF, Korlyukov AA, Muzafarov AM. Green Chem. 2018; 20: 1467
  • 14 Chen Z, Zhang Q, Chen W, Dong J, Yao H, Zhang X, Tong X, Wang D, Peng Q, Chen C, Li Y. Adv. Mater. 2018; 30: 1704720
  • 15 Jeon M, Han J, Park J. ChemCatChem 2012; 4: 521
    • 16a Schubert U, Lorenz C. Inorg. Chem. 1997; 36: 1258
    • 16b Gao J, Mai P.-L, Ge Y, Yuan W, Li Y, He C. ACS Catal. 2022; 12: 8476
  • 17 Lee M, Ko S, Chang S. J. Am. Chem. Soc. 2000; 122: 12011
  • 18 Ison EA, Corbin RA, Abu-Omar MM. J. Am. Chem. Soc. 2005; 127: 11938
  • 19 Kikukawa Y, Kuroda Y, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2012; 51: 2434
    • 20a Yuan W, Zhu X, Xu Y, He C. Angew. Chem. Int. Ed. 2022; 61: e202204912
    • 20b Zhu WK, Zhu HJ, Fang XJ, Ye F, Cao J, Xu Z, Xu LW. Org. Lett. 2023; 25: 7186
  • 21 Antico E, Leutzsch M, Wessel N, Weyhermüller T, Werlé C, Leitner W. Chem. Sci. 2023; 14: 54
  • 22 Liang H, Wang LJ, Ji YX, Wang H, Zhang B. Angew. Chem. Int. Ed. 2021; 60: 1839
  • 23 Saha A, Ali W, Werz DB, Maiti D. Nat. Commun. 2023; 14: 8173
  • 24 Limnios D, Kokotos CG. ACS Catal. 2013; 3: 2239
  • 25 Bähr S, Brinkmann-Chen S, Garcia-Borràs M, Roberts JM, Katsoulis DE, Houk KN, Arnold FH. Angew. Chem. Int. Ed. 2020; 59: 15507
    • 26a Huang W.-S, Xu H, Yang H, Xu L.-W. Chem. Eur. J. 2024; 30: e202302458
    • 26b Gao J, He C. Chem. Eur. J. 2023; 29: e202203475
  • 27 Wang K, Zhou J, Jiang Y. et al. Selective Manganese-Catalyzed Oxidation of Hydrosilanes to Silanols under Neutral Reaction Conditions. Angewandte Chemie 2019; 131: 6446