Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2025; 57(02): 447-456
DOI: 10.1055/a-2415-1629
DOI: 10.1055/a-2415-1629
paper
Special Topic Dedicated to Prof. H. Ila
Lewis Acid Catalyzed SN2-Type Domino Ring-Opening Cyclization (DROC) of Aziridines with Alkynes: A Synthetic Route to 2,3-Dihydropyrroles
M.K.G. is grateful to the Science and Engineering Research Board (SERB), India and the Indian Institute of Technology Kanpur (IIT-Kanpur), India for financial support. D.S., A.B., and N.R. thank IIT-Kanpur, India. S.K. and B.S. thank the Council of Scientific and Industrial Research (CSIR), India and A.K.S. thanks the University Grants Commission (UGC), India for research fellowships.
Dedicated to Prof. H. Ila on the occasion of her 80th birthday.
Abstract
A simple strategy for the synthesis of a variety of dihydropyrroles in good to excellent yields via a Lewis acid catalyzed, quaternary ammonium salt mediated SN2-type ring opening followed by cyclization of activated aziridines with alkynes in a domino fashion is described. The formation and the observed stereoselectivities of the products via an SN2-/double SN2-type ring-opening pathway are rationalized by mechanistic studies.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2415-1629.
- Supporting Information
Publication History
Received: 06 August 2024
Accepted after revision: 13 September 2024
Accepted Manuscript online:
13 September 2024
Article published online:
17 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Green MP, Prodger JC, Hayes CJ. Tetrahedron Lett. 2002; 43: 6609
- 1b Castellano S, Fiji HD. G, Kinderman SS, Watanabe M, de Leon P, Tamanoi F, Kwon O. J. Am. Chem. Soc. 2007; 129: 5843
- 1c O’Hagan D. Nat. Prod. Rep. 2000; 17: 435 ; and references cited therein
- 1d Dewick PM. Medicinal Natural Products, Chap. 6. J. Wiley & Sons; Chichester: 1997
- 1e Shen H.-F, Chen X, Liao P, Shao X.-S, Li Z, Xu X.-Y. Chin. Chem. Lett. 2015; 26: 509
- 2a Misra N, Luthra R, Singh KL, Kumar S. In Comprehensive Natural Products Chemistry, , Chap. 4.03. Barton D, Nakanishi K, Methcohn O, Kelly IW. Elsevier; Amsterdam: 1999
- 2b Terssell KB. G. Natural Product Chemistry, 2nd ed., Chap. 8. Apotekarsocieteten; Stockholm: 1977
- 2c Ye Z, Shi L, Shao X, Xu X, Xu Z, Li Z. J. Agric. Food Chem. 2013; 61: 312
- 3a Bellina F, Rossi R. Tetrahedron 2006; 62: 7213
- 3b Hou G.-H, Hie J.-H, Yan P.-C, Zhou Q.-L. J. Am. Chem. Soc. 2009; 131: 1366
- 3c Qin H, Guo T, Lin K, Li G, Lu H. Nat. Commun. 2023; 14: 7307 ; and references cited therein
- 4a Li X.-Z, He Y.-P, Wu H. Angew. Chem. Int. Ed. 2024; 63: e202317182
- 4b Wang P, Leng Y, Wu Y. Eur. J. Org. Chem. 2022; e202201091
- 4c Hegedus LS, McKearin JM. J. Am. Chem. Soc. 1982; 104: 2444
- 4d Ichikawa J, Fujiwara M, Wada Y, Okauchi T, Minami T. Chem. Commun. 2000; 1887
- 4e Ma S, Yu F, Li J, Gao W. Chem. Eur. J. 2007; 13: 247
- 4f Brichacek M, Njardarson JT. Org. Biomol. Chem. 2009; 7: 1761 ; and references cited therein
- 4g Knight DW, Redfern AL, Gilmore J. J. Chem. Soc., Perkin Trans. 1 2002; 622
- 4h Wu Q, Hu J, Ren X, Zhou J. Chem. Eur. J. 2011; 17: 11553
- 5a Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
- 5b Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765
- 5c Mitchinson A, Nadin A. J. Chem. Soc., Perkin Trans. 1 2000; 2862
- 5d Sardina FJ, Rapoport H. Chem. Rev. 1996; 96: 1825
- 5e Pichon M, Figadère B. Tetrahedron: Asymmetry 1996; 7: 927
- 5f Sundberg RJ. In Comprehensive Heterocyclic Chemistry II, Vol. 2. Bird CW. Pergamon; Oxford: 1996: 119
- 5g Davis FA, Zhang J, Qiu H, Wu Y. Org. Lett. 2008; 10: 1433
- 5h Jiang C, Frontier AJ. Org. Lett. 2007; 9: 4939
- 5i Trost BM, Silverman SM, Stambuli JP. J. Am. Chem. Soc. 2007; 129: 12398
- 5j Murruzzu C, Riera A. Tetrahedron: Asymmetry 2007; 18: 149
- 5k Rios R, Ibrahem I, Vesely J, Sundén H, Córdova A. Tetrahedron Lett. 2007; 48: 8695
- 5l Jiang W, Tran JA, Tucci FC, Fleck BA, Hoare SR, Markison S, Wen J, Chen CW, Marinkovic D, Arellano M, Foster AC, Chen C. Bioorg. Med. Chem. Lett. 2007; 17: 6546
- 5m Anxionnat B, Robert B, George P, Ricci G, Perrin M.-A, Pardo DG, Cossy J. J. Org. Chem. 2012; 77: 6087
- 5n Lim HJ, RajanBabu TV. Org. Lett. 2011; 13: 6596
- 5o Wang D, Fan Y, Yu P, Désaubry L. Chem. Commun. 2020; 56: 5584
- 6a Yaragorla S, Tangellapally R, Arun D. Eur. J. Org. Chem. 2024; 27: e202400238
- 6b Gong K, Ma Y, Yu P, Gao S, Li Y, Liang D, Sun S, Wang B. Adv. Synth. Catal. 2024; 366: 2352
- 6c Ji X, He R, Shi L, Sun S, Liang D. Eur. J. Org. Chem. 2024; 27: e202301246
- 6d Saini RK, Borpatra PJ, Pandey SK. Eur. J. Org. Chem. 2023; 26: e202300693
- 6e Hu X, Tao M, Gong K, Feng Q, Hu X, Li Y, Sun S, Liang D. J. Org. Chem. 2023; 88: 12935
- 6f Permingeat CP, Bianchini MA, Delpiccolo CM. L. J. Org. Chem. 2023; 88: 16091
- 6g Lei T, Cheng Y.-Y, Han X, Zhou C, Yang B, Fan X.-W, Chen B, Tung C.-H, Wu L.-Z. J. Am. Chem. Soc. 2022; 144: 16667
- 6h Guo C, Xue M.-X, Zhu M.-K, Gong L.-Z. Angew. Chem. Int. Ed. 2008; 47: 3414 ; Angew. Chem. 2008, 120, 3462
- 6i Zhou X, Zhang H, Yuan J, Mai L, Li Y. Tetrahedron Lett. 2007; 48: 7236
- 6j Wurz RP, Charette AB. Org. Lett. 2005; 7: 2313
- 6k Doyle MP, Yan M, Hu W, Gronenberg LS. J. Am. Chem. Soc. 2003; 125: 4692
- 7a Chiang H.-L, Zhao W.-T, Chen Y.-A, Lin Y.-C, Chen P.-L, Wu Y.-K. Synlett 2024; 35: 1145
- 7b Mohamadpour F. Sci. Rep. 2022; 12: 16911
- 7c Shi D, Zeng T, Lei X, Wu X, Li M, Zhang Y. Synthesis 2022; 54: 5434
- 7d Liu S, Zhuang Z, Qiao JX, Yeung K.-S, Su S, Cherney EC, Ruan Z, Ewing WR, Poss MA, Yu J.-Q. J. Am. Chem. Soc. 2021; 143: 21657
- 7e Surmont R, Verniest G, De Kimpe N. Org. Lett. 2009; 11: 2920
- 7f D’hooghe M, Buyck C, Contreras J, De Kimpe N. Org. Biomol. Chem. 2008; 6: 3667
- 7g Surmont R, Verniest G, Colpaert F, Macdonald G, Thuring JW, Deroose F, De Kimpe N. J. Org. Chem. 2009; 74: 1377
- 7h Brabandt WV, Landeghem RV, De Kimpe N. Org. Lett. 2006; 8: 1105
- 8a Hiyama T, Koide H, Fujita S, Nozaki H. Tetrahedron 1973; 29: 3137
- 8b DeShong P, Kell DA, Sidler DR. J. Org. Chem. 1985; 50: 2309
- 8c Bergmeier SC, Fundy SL, Seth PP. Tetrahedron 1999; 55: 8025
- 8d Bucciarelli M, Forni A, Moretti I, Prati F, Torre G. Tetrahedron: Asymmetry 1995; 6: 2073
- 8e Papa C, Tomasini C. Eur. J. Org. Chem. 2000; 1569
- 8f Concellόn JM, Riego E, Suárez JR, García-Granda S, Díaz MR. Org. Lett. 2004; 6: 4499
- 8g Wu J, Sun X, Xia H.-G. Tetrahedron Lett. 2006; 47: 1509
- 8h Ney JE, Wolfe JP. J. Am. Chem. Soc. 2006; 128: 15415
- 8i Ishii K, Sone T, Shigeyama T, Noji M, Sugiyama S. Tetrahedron 2006; 62: 10865
- 8j Vetica F, Bailey SJ, Kumar M, Mahajan S, von Essen C, Rissanen K, Enders D. Synthesis 2020; 52: 2038
- 8k Xing S, Xia H, Wang C, Wang Y, Hao L, Wang K, Zhu B. Adv. Synth. Catal. 2021; 363: 1044
- 8l Xing S, Wang Y, Jin C, Shi S, Zhang Y, Liao Z, Wang K, Zhu B. J. Org. Chem. 2022; 87: 6426
- 8m Wang Q, Fan T, Song J. Org. Lett. 2023; 25: 1246
- 8n Xing S, Jin C, Zhang P, Yang J, Liang Y, Ao X, Pi W, Wang K, Zhu B. J. Org. Chem. 2024; 89: 5153
- 8o Wu H, Li Y, Sun M, Zhang J, Li J, Yang J. Org. Lett. 2024; 26: 751
- 9a Yadav VK, Sriramurthy V. J. Am. Chem. Soc. 2005; 127: 16366
- 9b Gandhi S, Bisai A, Bhanu Prasad BA, Singh VK. J. Org. Chem. 2007; 72: 2133
- 9c Shi Z, Fan T, Zhang X, Zhan F, Wang Z, Zhao L, Lin J.-S, Jiang Y. Adv. Synth. Catal. 2021; 363: 2619
- 9d Wang C.-C, Wang X.-L, Zhang Q.-L, Liu J, Ma Z.-W, Liu Z.-J, Chen Y.-J. Org. Chem. Front. 2022; 9: 1574
- 9e Hashimoto K, Higuchi D, Matsubara S, Murakami K. Front. Chem. 2023; 11: 1272034
- 9f Qiao J, Wang S, Liu X, Feng X. Chem. Eur. J. 2023; 29: e202203757
- 9g Mazzarella D, Bortolato T, Pelosi G, Dell’Amico L. Chem. Sci. 2024; 15: 271
- 10a Ungureanu I, Bologa C, Chayer S, Mann A. Tetrahedron Lett. 1999; 40: 5315
- 10b Ungureanu I, Klotz P, Mann A. Angew. Chem. Int. Ed. 2000; 39: 4615
- 10c Ungureanu I, Klotz P, Schoenfelder P, Mann A. Tetrahedron Lett. 2001; 42: 6087
- 10d Drew MA, Tague AJ, Richardson C, Pyne SG, Hyland CJ. T. Org. Lett. 2021; 23: 4635
- 10e Zhu G.-S, Yang P.-J, Ma C.-X, Yang G, Chai Z. Org. Lett. 2021; 23: 7933
- 10f Wani IA, Sk S, Mal A, Sengupta A, Ghorai MK. Org. Lett. 2022; 24: 7867
- 10g Wu KJ. Y, Benedetto AE, Myers AG. J. Org. Chem. 2023; 88: 1907
- 10h Wang F, Xu X, Yan Y, Zhang J, Bai W.-J, Chen J, Yang Y. Org. Lett. 2023; 25: 6853
- 10i Wang F, Xu X, Yan Y, Zhang J, Yang Y. Org. Chem. Front. 2024; 11: 668
- 11a Ghorai MK, Ghosh K, Das K. Tetrahedron Lett. 2006; 47: 5399
- 11b Ghorai MK, Ghosh K. Tetrahedron Lett. 2007; 48: 3191
- 11c Westermeyer A, Guillamot G, Phansavath P, Ratovelomanana-Vidal V. Tetrahedron 2020; 76: 131221
- 11d Dong P, Chen L, Yang Z, Dong S, Feng X. Org. Chem. Front. 2021; 8: 6874
- 11e Xiao S, Chen B, Jiang Q, He L, Chu W.-D, He C.-Y, Liu Q.-Z. Org. Chem. Front. 2021; 8: 3729
- 11f Li Y, Chen F, Zhu S, Chu L. Org. Chem. Front. 2021; 8: 2196
- 12a Gaebert C, Mattay J. Tetrahedron 1997; 53: 14297
- 12b Madhushaw RJ, Hu C.-C, Liu R.-S. Org. Lett. 2002; 4: 4151
- 12c Zhu W, Cai G, Ma D. Org. Lett. 2005; 7: 5545
- 12d Ding C.-H, Dai L.-X, Hou X.-L. Tetrahedron 2005; 61: 9586
- 12e Gomes PJ. S, Nunes CM, Pais AA. C. C, Pinho e Melo TM. V. D, Arnaut LG. Tetrahedron Lett. 2006; 47: 5475
- 12f Wender PA, Strand D. J. Am. Chem. Soc. 2009; 131: 7528
- 12g Fan J, Gao L, Wang Z. Chem. Commun. 2009; 5021
- 12h Feng J.-J, Lin T.-Y, Zhu C.-Z, Wang H, Wu H.-H, Zhang J. J. Am. Chem. Soc. 2016; 138: 2178
- 12i Nguyen TN, May JA. Org. Lett. 2018; 20: 3618
- 12j Rong J, Jiang H, Wang S, Su Z, Wang H, Tao C. Org. Biomol. Chem. 2020; 18: 3149
- 12k Kapoor R, Chawla R, Verma A, Keshari T, Siddiqui IR. Synlett 2023; 34: 1621
- 13a Kashyap S, Singh B, Ghorai MK. J. Org. Chem. 2024; 89: 11429
- 13b Singh B, Kashyap S, Singh S, Gupta S, Ghorai MK. J. Org. Chem. 2024; 89: 2247
- 13c Goswami G, Singh B, Wani IA, Mal A, Ghorai MK. J. Org. Chem. 2024; 89: 11576
- 13d Singh B, Kumar M, Goswami G, Verma I, Ghorai MK. J. Org. Chem. 2023; 88: 4504
- 13e Pradhan S, Chauhan N, Shahi CK, Bhattacharyya A, Ghorai MK. Org. Lett. 2020; 22: 7903
- 13f Bhattacharyya A, Das S, Chauhan N, Biswas PK, Ghorai MK. Synlett 2020; 31: 708
- 13g Wani IA, Goswami G, Sk S, Mal A, Sayyad M, Ghorai MK. Org. Biomol. Chem. 2020; 18: 272
- 13h Tarannum S, Sk S, Das S, Wani IA, Ghorai MK. J. Org. Chem. 2020; 85: 367
- 13i Goswami G, Chauhan N, Mal A, Das S, Das M, Ghorai MK. ACS Omega 2018; 3: 17562
- 13j Ghorai MK, Shukla D, Das K. J. Org. Chem. 2009; 74: 7013
- 13k Ghorai MK, Das K, Shukla D. J. Org. Chem. 2007; 72: 5859
- 13l Ghorai MK, Kumar A, Das K. Org. Lett. 2007; 9: 5441
- 14a Ghorai MK, Kumar A, Tiwari DP. J. Org. Chem. 2010; 75: 137
- 14b Ghorai MK, Shukla D, Bhattacharyya A. J. Org. Chem. 2012; 77: 3740
- 14c Bhattacharyya A. Synlett 2012; 23: 2142
- 15 See the Supporting Information for details.
- 16 The dihydropyrroles are sensitive to acidic impurities and were partially hydrolyzed during column chromatographic purification of the crude reaction mixture and during the preparation of analytical samples.
- 17 Perrin DD, Armarego WL. F. Purification of Laboratory Chemicals, 3rd ed. Pergamon Press; Oxford: 1988
- 18 Jenkins CL, Kochi JK. J. Am. Chem. Soc. 1972; 94: 843
For some reviews and examples of the synthesis of pyrrolidine derivatives, see:
For some examples of the synthesis of 2,3-dihydropyrrole derivatives, see: