Subscribe to RSS
DOI: 10.1055/a-2435-5962
19F-Labeled NMR Probes for the Detection and Discrimination of Nitrogen-Containing Analytes
This work was supported by the National Natural Science Foundation of China (22271305) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0590000).
Abstract
The development of 19F-labeled NMR probes has become a pivotal tool in analytical chemistry. Recent advancements in probe design enable precise identification of nitrogen-containing analytes, significantly enhancing the analysis of these biologically important analytes in complex mixtures. This short review highlights recent progress with probes based on covalent derivatization and dynamic exchange strategies, which yield distinct 19F NMR signals for each nitrogen-containing analyte. These strategies facilitate separation-free multicomponent analysis and chiral discrimination. Discussions will cover design principles, scope, limitations, and strategies to enhance the sensitivity and resolving ability. By addressing current challenges, 19F-labeled NMR probes hold the potential to revolutionize the detection of biologically relevant molecules, catalyzing new discoveries in chemical and biochemical research.
1 Introduction
2 19F-Labeled Probes Based on Covalent Derivatization
2.1 Non-Chiral 19F-Labeled Probes Based on Covalent Derivatization
2.2 Chiral 19F-Labeled Probes Based on Covalent Derivatization
3 19F-Labeled Probes Based on Dynamic Ligand Exchange
3.1 Non-Chiral 19F-Labeled Probes Based on Dynamic Ligand Exchange
3.2 Chiral 19F-Labeled Probes Based on Dynamic Ligand Exchange
4 Conclusion and Outlook
Key words
19F NMR - derivatization reagents - metal complex - molecular recognition - chirality sensing - asymmetric synthesisPublication History
Received: 26 August 2024
Accepted after revision: 07 October 2024
Accepted Manuscript online:
07 October 2024
Article published online:
04 November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Jiang H, Cai J, Feng X, Chen Y, Wang L, Jiang B, Liao Y, Li J, Zhang G, Mu Y, Chen J. Environ. Sci. Technol. 2023; 57: 16500
- 2 Marshall CM, Federice JG, Bell CN, Cox PB, Njardarson JT. J. Med. Chem. 2024; 67: 11622
- 3 Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909
- 4 Heravi MM, Zadsirjan V. RSC Adv. 2020; 10: 44247
- 5 Bamba D, Coulibaly M, Robert D. Sci. Total Environ. 2017; 580: 1489
- 6 Hedges JB, Ryan KS. Chem. Rev. 2020; 120: 3161
- 7 Shelton J, Lu X, Hollenbaugh JA, Cho JH, Amblard F, Schinazi RF. Chem. Rev. 2016; 116: 14379
- 8 Dumez JN. Chem. Commun. 2022; 58: 13855
- 9 Beckonert O, Keun HC, Ebbels TM. D, Bundy J, Holmes E, Lindon JC, Nicholson JK. Nat. Protoc. 2007; 2: 2692
- 10 Chen H, Viel S, Ziarelli F, Peng L. Chem. Soc. Rev. 2013; 42: 7971
- 11 Xu Z, Liu C, Zhao S, Chen S, Zhao Y. Chem. Rev. 2019; 119: 195
- 12 Yu W, Yang Y, Bo S, Li Y, Chen S, Yang Z, Zheng X, Jiang Z, Zhou X. J. Org. Chem. 2015; 80: 4443
- 13 Zeng Y, Bao W, Gu G, Zhao Y. Magn. Reson. Lett. 2024; 4: 200112
- 14 Wang W, Xia X, Bian G, Song L. Chem. Commun. 2019; 55: 6098
- 15 Jang S, Park H, Duong QH, Kwahk EJ, Kim H. Anal. Chem. 2022; 94: 1441
- 16 Li H, Xu Z, Zhang S, Jia Y, Zhao Y. Anal. Chem. 2022; 94: 2023
- 17 Escrig-Doménech A, Simó-Alfonso E, Herrero-Martínez J, Ramis-Ramos G. J. Chromatogr. A 2013; 1296: 140
- 18 Widner B, Kido Soule MC, Ferrer-González FX, Moran MA, Kujawinski EB. Anal. Chem. 2021; 93: 4809
- 19 Vitali V, Torricella F, Massai L, Messori L, Banci L. Sci. Rep. 2023; 13: 22017
- 20 Groleau RR, Chapman RS. L, Ley Smith H, Liu L, James TD, Bull SD. J. Org. Chem. 2020; 85: 1208
- 21 Kim J, Kim H. Anal. Chem. 2023; 95: 17726
- 22 Meng X, Crestini C, Ben H, Hao N, Pu Y, Ragauskas AJ, Argyropoulos DS. Nat. Protoc. 2019; 14: 2627
- 23 Moghimi A, Omrani I, Nabid MR, Mahmoodi M. Eur. Polym. J. 2013; 49: 228
- 24 Huang B, Xu L, Zhao Z, Wang N, Zhao Y, Huang S. Bioorg. Chem. 2022; 124: 105818
- 25 Xu L, Huang B, Hou Z, Huang S, Zhao Y. Anal. Chem. 2023; 95: 3012
- 26 Hamaguchi N, Nishizawa R, Ikeda M, Yokoyama M, Suzuki H, Matsumoto K, Ohta T, Oe Y. ChemistrySelect 2024; 9: e202303190
- 27 Duong Q, Kwahk E.-J, Kim J, Park H, Cho H, Kim H. Anal. Chem. 2024; 96: 1614
- 28 Cui CY, Li B, Cheng D, Li XY, Chen JL, Chen YT, Su XC. Anal. Chem. 2022; 94: 901
- 29 Chen Y.-T, Li B, Li X.-Y, Chen J.-L, Cui C.-Y, Hu K, Su X.-C. Chem. Commun. 2021; 57: 13154
- 30 Sakamoto T, Qiu Z, Inagaki M, Fujimoto K. Anal. Chem. 2020; 92: 1669
- 31 Kasprzyk-Hordern B. Chem. Soc. Rev. 2010; 39: 4466
- 32 Salam A. J. Mol. Evol. 1991; 33: 105
- 33 Barron LD. Chem. Soc. Rev. 1986; 15: 189
- 34 Brill ZG, Condakes ML, Ting CP, Maimone TJ. Chem. Rev. 2017; 117: 11753
- 35 Seckler JM, Lewis SJ. Int. J. Mol. Sci. 2020; 21: 7325
- 36 Wang Y, Zhang Y, Yu C, Yin BH, Chen Q, Sun S.-P, Wang X. ACS Appl. Polym. Mater. 2024; 6: 8706
- 37 Xie SM, Zhang ZJ, Wang ZY, Yuan LM. J. Am. Chem. Soc. 2011; 133: 11892
- 38 Sayre CL, Alrushaid S, Martinez SE, Anderson HD, Davies NM. J. Pharm. Pharm. Sci. 2015; 18: 368
- 39 Sweeny DJ, Nellans HN. J. Biol. Chem. 1992; 267: 13171
- 40 Dale JA, Dull DL, Mosher HS. J. Org. Chem. 1969; 34: 2543
- 41 Dale JA, Mosher HS. J. Am. Chem. Soc. 1973; 95: 512
- 42 Huang B, Xu L, Wang N, Ying J, Zhao Y, Huang S. Anal. Chem. 2022; 94: 1867
- 43 Chen Y.-T, Li B, Chen J.-L, Su X.-C. Anal. Chem. 2022; 94: 7853
- 44 Xu L, Wang Q, Liu Y, Fu S, Zhao Y, Huang S, Huang B. Analyst 2023; 148: 4548
- 45 Liang J, Xu Z, Wu J, Zhao Y. Anal. Chem. 2023; 95: 7569
- 46 Zhao Y, Swager TM. J. Am. Chem. Soc. 2013; 135: 18770
- 47 Yeste SL, Powell ME, Bull SD, James TD. J. Org. Chem. 2009; 74: 427
- 48 Zhang X, Xu J, Sun Z, Bian G, Song L. RSC Adv. 2022; 12: 4692
- 49 Pérez-Fuertes Y, Kelly AM, Fossey JS, Powell MP, Bull SD, James TD. Nat. Protoc. 2008; 3: 210
- 50 Kelly AM, Pérez-Fuertes Y, Fossey JS, Yeste SL, Bull SD, James TD. Nat. Protoc. 2008; 3: 215
- 51 Zhao Y, Chen L, Swager TM. Angew. Chem. Int. Ed. 2016; 55: 917
- 52 Dong C, Xu Z, Wen L, He S, Wu J, Deng QH, Zhao Y. Anal. Chem. 2021; 93: 2968
- 53 Wen L, Meng H, Gu S, Wu J, Zhao Y. Anal. Chem. 2022; 94: 8024
- 54 Jiang J, Wen L, Wang H, Chen X, Zhao Y, Wang X. J. Fluorine Chem. 2023; 266: 110085
- 55 Meng H, Wen L, Xu Z, Li Y, Hao J, Zhao Y. Org. Lett. 2019; 21: 5206
- 56 Chen Y, Gu Y, Meng H, Shao Q, Xu Z, Bao W, Gu Y, Xue XS, Zhao Y. Angew. Chem. Int. Ed. 2022; 61: e202201240
- 57 Wei Z, Wen L, Zhu K, Wang Q, Zhao Y, Hu J. J. Am. Chem. Soc. 2022; 144: 22281
- 58 Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
- 59 George E, Joy J, Anas S. Polym. Compos. 2021; 42: 4961
- 60 Zhao Y, Markopoulos G, Swager TM. J. Am. Chem. Soc. 2014; 136: 10683
- 61 Bao W, Gu G, Wu J, Gu Y.-C, Zhao Y. Anal. Chem. 2024; 96: 4463
- 62 Gu G, Zeng Y, Peng T, Bao W, Zhang Z, Wu J, Zhao Y. Eur. J. Org. Chem. 2024; 27: e202400441
- 63 Xu Z, Gu S, Li Y, Wu J, Zhao Y. Anal. Chem. 2022; 94: 8285
- 64 Zhao Y, Swager TM. J. Am. Chem. Soc. 2015; 137: 3221
- 65 Gu G, Xu Z, Wen L, Liang J, Wang C, Wan X, Zhao Y. JACS Au 2023; 3: 1348
- 66 Gu G, Yue Y, Wang C, Zhang W, Wu J, Li Y, Zhao Y. Org. Lett. 2023; 25: 4819
- 67 Wang C, Gu G, Zhang W, Wu J, Zhao Y. Chem. Commun. 2024; 60: 5082
- 68 Gu G, Zhao C, Zhang W, Weng J, Xu Z, Wu J, Xie Y, He X, Zhao Y. Anal. Chem. 2024; 96: 730
- 69 Bao W, Wang H, Wen L, Wu J, Gu Y.-C, Wang X, Zhao Y. Anal. Chem. 2024; 96: 11448
- 70 Li Y, Wen L, Meng H, Lv J, Luo G, Zhao Y. Cell Rep. Phys. Sci. 2020; 1: 100100
- 71 Weng J, Wen L, Gu G, Bao W, Wu J, Zhao Y. Anal. Chem. 2024; 96: 13551
- 72 Jia Y, Wen L, Bao W, Xu Z, Wu J, Zhao Y. Anal. Chem. 2023; 95: 10362