Subscribe to RSS
DOI: 10.1055/a-2436-0471
Pd/IHept-Catalyzed Regioselective Annulation of 2-Fluoroallyl Carbonates with Enaminones: Synthesis of Fully Substituted Pyrroles
This work was supported by the Outstanding Innovative Talents Cultivation Funded Programs 2023 of Renmin University of China, the National Natural Science Foundation of China (22201300, 22071266), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (24XNKJ27).
Abstract
The Pd/IHept-catalyzed regioselective annulation of 2-fluoroallyl carbonates with enaminones has been developed. This method allows the efficient synthesis of a variety of fully substituted pyrroles with high regioselectivity. Experimental data demonstrate that the fluorinated alkene intermediate is initially formed, which then undergoes C–F cleavage/annulation to give the pyrrole products. Furthermore, it is evident that both the substitution and annulation steps necessitate the participation of the Pd/IHept catalyst.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2436-0471.
- Supporting Information
Publication History
Received: 31 July 2024
Accepted after revision: 07 October 2024
Accepted Manuscript online:
07 October 2024
Article published online:
28 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
- 1b Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 1c Trost BM. Science 1983; 219: 245
- 2a Pearson RG. J. Am. Chem. Soc. 1963; 85: 3533
- 2b Mayr H, Breugst M, Ofial AR. Angew. Chem. Int. Ed. 2011; 50: 6470
- 3a Burke MD, Schreiber SL. Angew. Chem. Int. Ed. 2004; 43: 46
- 3b Mahatthananchai J, Dumas AM, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 10954
- 3c Funken N, Zhang Y.-Q, Gansäuer A. Chem. Eur. J. 2017; 23: 19
- 4a Jiang R, Ding L, Zheng C, You S.-L. Science 2021; 371: 380
- 4b Mishra NK, Sharma S, Park J, Han S, Kim IS. ACS Catal. 2017; 7: 2821
- 4c Süsse L, Stoltz BM. Chem. Rev. 2021; 121: 4084
- 5a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 5b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 5c Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 5d Van der Veken P, Senten K, Kertèsz I, De Meester I, Lambeir A.-M, Maes M.-B, Scharpé S, Haemers A, Augustyns K. J. Med. Chem. 2005; 48: 1768
- 5e Dutheuil G, Couve-Bonnaire S, Pannecoucke X. Angew. Chem. Int. Ed. 2007; 46: 1290
- 5f Liu Q, Ni C, Hu J. Natl. Sci. Rev. 2017; 4: 303
- 5g Moschner J, Stulberg V, Fernandes R, Huhmann S, Leppkes J, Koksch B. Chem. Rev. 2019; 119: 10718
- 5h Deng D.-S, Tang S.-Q, Yuan Y.-T, Xie D.-X, Zhu Z.-Y, Huang Y.-M, Liu Y.-L. Chin. Chem. Lett. 2024; 35: 109417
- 5i He J, Li Z, Dhawan G, Zhang W, Sorochinsky A, Butler G, Soloshonok V, Han J. Chin. Chem. Lett. 2023; 34: 107578
- 5j Wu W, You Y, Weng Z. Chin. Chem. Lett. 2022; 33: 4517
- 6a Lv L, Qian H, Li Z. ChemCatChem 2022; 14: e202200890
- 6b Zhu Y, Zeng Y, Jiang Z.-T, Xia Y. Synlett 2023; 34: 1
- 6c Wang Q, Song H, Wang Q. Chin. Chem. Lett. 2022; 33: 626
- 6d Zhong T, Chen Z, Yi J, Lu G, Weng J. Chin. Chem. Lett. 2021; 32: 2736
- 7a Castaño AM, Aranyos A, Szabó KJ, Bäckvall J.-E. Angew. Chem. Int. Ed. Engl. 1995; 34: 2551
- 7b Aranyos A, Szabó KJ, Castaño AM, Bäckvall J.-E. Organometallics 1997; 16: 1058
- 7c Organ MG, Miller M, Konstantinou Z. J. Am. Chem. Soc. 1998; 120: 9283
- 7d Kadota J, Katsuragi H, Fukumoto Y, Murai S. Organometallics 2000; 19: 979
- 8 Bergeron M, Johnson T, Paquin J.-F. Angew. Chem. Int. Ed. 2011; 50: 11112
- 9a Beletskaya IP, Ananikov VP. Chem. Rev. 2022; 122: 16110
- 9b Wang MH, Scheidt KA. Angew. Chem. Int. Ed. 2016; 55: 14912
- 10 Yamamoto M, Hayashi S, Isa K, Kawatsura M. Org. Lett. 2014; 16: 700
- 11a Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
- 11b Miyaura N. In Metal-Catalyzed Cross-Coupling Reactions, 2nd ed., Chap. 2. de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004: 41
- 12 Crabtree RH. In The Organometallic Chemistry of the Transition Metals, 6th ed. Wiley; Hoboken: 2014: 163
- 13a Méndez M, Cuerva JM, Gómez-Bengoa E, Cárdenas DJ, Echavarren AM. Chem. Eur. J. 2002; 8: 3620
- 13b Zhang P, Brozek LA, Morken JP. J. Am. Chem. Soc. 2010; 132: 10686
- 13c Zhang P, Le H, Kyne RE, Morken JP. J. Am. Chem. Soc. 2011; 133: 9716
- 13d Lv L, Qian H. Green Synth. Catal. 2023; 4: 190
- 13e Chen J.-P, Peng Q, Lei B.-L, Hou X.-L, Wu Y.-D. J. Am. Chem. Soc. 2011; 133: 14180
- 13f Bai D.-C, Yu F.-L, Wang W.-Y, Chen D, Li H, Liu Q.-R, Ding C.-H, Chen B, Hou X.-L. Nat. Commun. 2016; 7: 11806
- 14a Lv L, Li C.-J. Angew. Chem. Int. Ed. 2021; 60: 13098
- 14b Qian H, Nguyen HD, Lv L, Chen S, Li Z. Angew. Chem. Int. Ed. 2023; 62: e202303271
- 14c Qian H, Cheng ZP, Luo Y, Lv L, Chen S, Li Z. J. Am. Chem. Soc. 2024; 146: 24
- 14d Lv L, Qian H, Ma Y, Huang S, Yan X, Li Z. Chem. Sci. 2021; 12: 15511
- 14e Lv L, Qian H, Crowell AB, Chen S, Li Z. ACS Catal. 2022; 12: 6495
- 15a DeRosa TF. Enaminones. In Advances in Synthetic Organic Chemistry and Methods Reported in US Patents. DeRosa TF. Elsevier; Oxford: 2006: 261
- 15b Guan X, Qian Y, Zhang X, Jiang H.-L. Angew. Chem. Int. Ed. 2023; 62: e202306135
- 15c Han Y, Zhou L, Wang C, Feng S, Ma R, Wan J.-P. Chin. Chem. Lett. 2024; 35: 108977
- 16a Fortman GC, Nolan SP. Chem. Soc. Rev. 2011; 40: 5151
- 16b Janssen-Müller D, Schlepphorst C, Glorius F. Chem. Soc. Rev. 2017; 46: 4845
- 17 Xiao L, Chang X, Xu H, Xiong Q, Dang Y, Wang C.-J. Angew. Chem. Int. Ed. 2022; 61: e202212948
- 18 Wu T.-S, Hao Y.-J, Cai Z.-J, Ji S.-J. Org. Chem. Front. 2024; 11: 1057