RSS-Feed abonnieren
DOI: 10.1055/a-2446-9165
Recent Advances in Chlorination: Novel Reagents and Methods from the Last Decade
Abstract
Chlorinated compounds are vital in organic synthesis, impacting nucleophilic substitutions, β-elimination, and C–H acidity. Herein, recent advances in (hetero)arene chlorination, focusing on novel reagents and methods developed in the past decade, are showcased. Traditional electrophilic agents such as Cl2 and PCl5 have been expanded with new chlorinating agents such as Palau’chlor, as well as with electrochemical and photochemical techniques. Biocatalyzed chlorination using FAD-dependent halogenases has also been explored. Key trends include green chemistry with eco-friendly chlorine sources like NaCl and HCl. Although nucleophilic chlorination remains rare, electrochemical methods show promise, despite equipment limitations. This graphical review highlights significant progress in the last decade towards more sustainable and efficient chlorination strategies.
#
Key words
(hetero)arene chlorination - electrophilic substitution - nucleophilic chlorination - chlorinating agents - electrochemistry - photocatalysis - biocatalysis - green chemistryBiographical Sketches
Iago Vogel (center) was born in São Paulo, Brazil. He earned his B.Sc. degree in biochemistry from the University of Aveiro, Portugal, in 2023, where he completed his final project in organic chemistry under the mentorship of Professors Nuno Candeias (right) and Diana Pinto (left). He subsequently began a master’s program in chemistry at the same university, where he was awarded the Novos Talentos Gulbenkian Scholarship. Currently, in the second year of his master’s studies, Iago’s thesis builds on his undergraduate research, focusing on enhancing the complexity of natural products for medicinal chemistry applications.
Chlorinated compounds are pivotal in organic synthesis, playing key roles in reactions such as nucleophilic substitutions, β-eliminations, and increasing C–H acidity. Chlorination significantly alters the physical and chemical properties of organic molecules, making it a valuable tool in drug development and materials science. Most often, chlorine sources act as electrophiles in these transformations.
Traditional electrophilic chlorinating agents such as Cl2, sulfuryl chloride (SO2Cl2), antimony pentachloride (SbCl5), phosphorus pentachloride (PCl5), and tert-butyl hypochlorite (tBuOCl), though effective, present challenges due to their high toxicity and reactivity. Similarly, widely used reagents such as N-chlorosuccinimide (NCS), 1,3-dichloro-5,5-dimethylhydantoin (DCDMH), trichloroisocyanuric acid (TCCA), and iodobenzene dichloride (PhICl2) offer poor atom economy and generate excessive waste.
This graphical review highlights key advancements in the chlorination of organic molecules, particularly (hetero)arenes, over the past decade, with a focus on the development of novel chlorinating reagents. The progress in direct chlorinating agents—where the chlorine source is embedded within the structure of the reagent—is emphasized, along with emerging electrochemical and photochemical methods that utilize electrons and photons as reagents. In addition, this graphical review examines new mediators and catalysts that activate established chlorinating agents such as NCS, DCDMH, SO2Cl2, phosphorus(V) oxychloride (POCl3), and trimethylchlorosilane (TMSCl), thereby broadening the utility of these readily available chlorine sources. This review also explores nature-inspired biocatalyzed chlorination, showcasing recent progress in this area.
Building on Cui’s review on oxidative chlorination[1a] and Verma’s review on general C–H chlorination,[1b] this work shifts the focus towards aromatic chlorination, introducing new direct chlorinating agents, electrochemical methods, and biocatalysis. While there is overlap with previous reviews, this work provides a more expansive and detailed exploration of advanced chlorination techniques.
Each figure in this graphical review presents a novel chlorinating reagent, reaction conditions, substrate scope, and a detailed analysis of the mechanisms and catalytic cycles in order to enhance the understanding of these transformations.
In conclusion, recent advances in (hetero)arene chlorination have introduced a wide variety of novel reagents and methodologies that have significantly expanded the scope of this field. Most contemporary methods rely on electrophilic aromatic substitution (SEAr), with direct chlorinating agents such as Palau’chlor, CFBSA, CMOBSA, and NCBSI as key examples. Other approaches, including sulfoxide-mediated, amine-catalyzed, and various other catalyzed processes, also utilize this mechanism. In biocatalysis, FAD-dependent halogenases are exclusively used for electrophilic chlorination.
In contrast, some innovative methods involve chlorination through nucleophilic aromatic substitution (SNAr). These include electrochemical and photocatalytic processes, Selectfluor-mediated halogenation of 2-aminopyridines and 2-aminodiazines, and Oxone- and Fe(III)-mediated chlorination. Additionally, Ni-catalyzed chlorination operates through ligand exchange and reductive elimination.
A notable trend is the integration of green chemistry principles, with many methods utilizing readily available and environmentally benign chlorine sources such as NaCl, LiCl, KCl, MgCl2, and HCl. This shift towards sustainable practices reflects the broader movement in chemical synthesis towards minimizing environmental impact and increasing practicality.
Despite these advances, nucleophilic chlorination remains relatively rare, often requiring the presence of electron-donating groups (EDGs) on the arene moiety, which can limit the range of substrates. Electrochemical methods are particularly noteworthy for their versatility and capability of minimizing the environmental footprint, using simple and accessible chlorine sources with minimal waste. However, their practical application is constrained by the need for specialized electrochemical equipment.
Overall, the recent progress in chlorination techniques highlights a significant evolution towards greater efficiency and sustainability, with emerging methods improving both the atom economy and the environmental impact.
#
Conflict of Interest
The authors declare no conflict of interest.
-
References
- 1a Cui HL. Org. Biomol. Chem. 2024; 22: 1580
- 1b Kachore A, Aggarwal V, Bala E, Singh H, Guleria S, Sharma S, Pathan S, Malik S, Selvaraj M, Assiri MA, Verma PK. Chem. Asian. J. 2024; 19: e202400391
- 1c Rodriguez RA, Pan CM, Yabe Y, Kawamata Y, Eastgate MD, Baran PS. J. Am. Chem. Soc. 2014; 136: 6908
- 1d Fukui N, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2015; 54: 6311
- 1e Ooi S, Yoneda T, Tanaka T, Osuka A. Chem. Eur. J. 2015; 21: 7772
- 1f Frabitius CR, Nowak MO, Wiklik KA, Sabiniarz MD, Buda AN, Guzik PS, Bialas AK, Pawlik HE, Boutard NF. WO Patent 180537A1, 2016
- 1g Huber T, Kaiser D, Rickmeier J, Magauer T. J. Org. Chem. 2015; 80: 2281
- 1h Haut FL, Habiger C, Wein LA, Wurst K, Podewitz M, Magauer T. J. Am. Chem. Soc. 2021; 143: 1216
- 2a Lu Z, Li Q, Tang M, Jiang P, Zheng H, Yang X. Chem. Commun. 2015; 51: 14852
- 2b Wang HY, Pu XQ, Yang XJ. J. Org. Chem. 2018; 83: 13103
- 2c Zhu Y, Huang J, Yang X. Chin. J. Org. Chem. 2019; 39: 1665
- 2d Pu XQ, Zhao HY, Lu ZH, He XP, Yang XJ. Eur. J. Org. Chem. 2016; 4526
- 2e Zhao H, Pu X, Yang X. Chin. J. Chem. 2017; 35: 1417
- 3 Pu X, Li Q, Lu Z, Yang X. Eur. J. Org. Chem. 2016; 5937
- 4a Misal B, Palav A, Ganwir P, Chaturbhuj G. Tetrahedron Lett. 2021; 63: 152689
- 4b Palav A, Misal B, Chaturbhuj G. J. Org. Chem. 2021; 86: 12467
- 4c Palav A, Misal B, Ganwir P, Badani P, Chaturbhuj G. Tetrahedron Lett. 2021; 73: 153094
- 4d Bhalerao S, Chaudhari H. Tetrahedron Lett. 2023; 123: 154539
- 4e Sun J, Guo Y, Xia J, Zheng G, Zhang Q. Molecules 2023; 28: 7420
- 5a Granados A, Jia Z, del Olmo M, Vallribera A. Eur. J. Org. Chem. 2019; 2812
- 5b Qu ZW, Zhu H, Grimme S. ChemCatChem 2020; 12: 6186
- 5c Levitre G, Granados A, Molander GA. Green Chem. 2023; 25: 560
- 5d Patil DB, Gámez-Montaño R, Ordoñez M, Solis-Santos M, Jiménez-Halla JO. C, Solorio-Alvarado CR. Eur. J. Org. Chem. 2022; e202201295
- 5e Nahide PD, Ramadoss V, Juárez-Ornelas KA, Satkar Y, Ortiz-Alvarado R, Cervera-Villanueva JM. J, Alonso-Castro ÁJ, Zapata-Morales JR, Ramírez-Morales MA, Ruiz-Padilla AJ, Deveze-Álvarez MA, Solorio-Alvarado CR. Eur. J. Org. Chem. 2018; 485
- 5f Himabindu V, Parvathaneni SP, Rao VJ. New J. Chem. 2018; 42: 18889
- 5g Fosu SC, Hambira CM, Chen AD, Fuchs JR, Nagib DA. Chem 2019; 5: 417
- 5h Yang F, Wang X, Zhao W, Yu F, Yu Z. ACS Omega 2021; 6: 34044
- 5i Liu T, Li Y, Jiang L, Wang J, Jin K, Zhang R, Duan C. Org. Biomol. Chem. 2020; 18: 1933
- 5j Zeng Z, Xun X, Huang L, Xu J, Zhu G, Li G, Sun W, Hong L, Wang R. Green Chem. 2018; 20: 2477
- 5k Peilleron L, Grayfer TD, Dubois J, Dodd RH, Cariou K. Beilstein J. Org. Chem. 2018; 14: 1103
- 5l Granados A, Shafir A, Arrieta A, Cossío FP, Vallribera A. J. Org. Chem. 2020; 85: 2142
- 6a Yuan Y, Lei A. Nat. Commun. 2020; 11: 802
- 6b Zhou Z, Yuan Y, Cao Y, Qiao J, Yao A, Zhao J, Zuo W, Chen W, Lei A. Chin. J. Chem. 2019; 37: 611
- 6c Yuan Y, Yao A, Zheng Y, Zhao J, Wen H, Lei A. iScience 2019; 12: 293
- 6d Liu X, Wu Z, Feng C, Liu W, Li M, Shen Z. Eur. J. Org. Chem. 2022; e202200262
- 6e Liu K, Deng Y, Song W, Song C, Lei A. Chin. J. Chem. 2020; 38: 1070
- 6f Liang Y, Lin F, Adeli Y, Jin R, Jiao N. Angew. Chem. Int. Ed. 2019; 58: 4566
- 6g Liu F, Wu N, Cheng X. Org. Lett. 2021; 23: 3015
- 6h Yu D, Ji R, Sun Z, Li W, Liu ZQ. Tetrahedron Lett. 2021; 86: 153514
- 6i Shen T, Xu Y, Jiang C, Lai Y, Wu L, Liu S, Zhang L, Qian C, Zhou S. ACS Sustainable Chem. Eng. 2024; 12: 3289
- 6j Liu Q, Sun B, Liu Z, Kao Y, Dong BW, Jiang S.-D, Li F, Liu G, Yang Y, Mo F. Chem. Sci. 2018; 9: 8731
- 6k Goljani H, Tavakkoli Z, Sadatnabi A, Nematollahi D. Org. Lett. 2020; 22: 5920
- 6l Li M, Zhang C, Zhou YQ, Liu Y, Zhao N, Li X, Gu LJ. Tetrahedron Lett. 2022; 89: 153602
- 6m Fu N, Sauer GS, Lin S. J. Am. Chem. Soc. 2017; 139: 15548
- 6n Allen BD. W, Hareram MD, Seastram AC, McBride T, Wirth T, Browne DL, Morrill LC. Org. Lett. 2019; 21: 9241
- 6o Dong X, Roeckl JL, Waldvogel SR, Morandi B. Science 2021; 371: 507
- 6p Harnedy J, Hareram MD, Tizzard GJ, Coles SJ, Morrill LC. Chem. Commun. 2021; 57: 12643
- 6q Fagnani DE, Kim D, Camarero SI, Alfaro JF, McNeil AJ. Nat. Chem. 2022; 15: 222
- 6r Zhang LM, Fu ZH, Yuan DF, Guo MZ, Li M, Wen LR, Zhang LB. Tetrahedron Lett. 2023; 114: 154244
- 6s Fan J, Li Y, Wei Y, Liu F, Lu D, Ye T, Dai J, Cheng X. J. Chem. Educ. 2023; 100: 3008
- 7a Noël T, Zysman-Colman E. Chem. Catal. 2022; 2: 468
- 7b Hering T, Mühldorf B, Wolf R, König B. Angew. Chem. Int. Ed. 2016; 55: 5342
- 7c Hering T, König B. Tetrahedron 2016; 72: 7821
- 7d Zhang L, Hu X. Chem. Sci. 2017; 8: 7009
- 7e Düsel SJ. S, König B. Eur. J. Org. Chem. 2020; 2020, 1491
- 7f Rogers DA, Bensalah AT, Espinosa AT, Hoerr JL, Refai FH, Pitzel AK, Alvarado JJ, Lamar AA. Org. Lett. 2019; 21: 4229
- 7g Rogers DA, Gallegos JM, Hopkins MD, Lignieres AA, Pitzel AK, Lamar AA. Tetrahedron 2019; 75: 130498
- 7h Rogers DA, Hopkins MD, Rajagopal N, Varshney D, Howard HA, Leblanc G, Lamar AA. ACS Omega 2020; 5: 7693
- 7i Pramanik M, Mathuri A, Sau S, Das M, Mal P. Org. Lett. 2021; 23: 8088
- 7j Deng M, Liu K, Yuan S, Luo G, Dian L. Org. Lett. 2023; 25: 4576
- 7k Xie W, Wang M, Yang S, Chen Y, Feng J, Huang Y. Org. Biomol. Chem. 2022; 20: 5319
- 7l Shen J, Wang Z, Shen C, Zhang P. Mol. Catal. 2023; 537: 112950
- 7m Xiang M, Zhou C, Yang XL, Chen B, Tung CH, Wu LZ. J. Org. Chem. 2020; 85: 9080
- 8a Song S, Li X, Wei J, Wang W, Zhang Y, Ai L, Zhu Y, Shi X, Zhang X, Jiao N. Nat. Catal. 2019; 3: 107
- 8b Ji YZ, Li HJ, Wang YR, Zhang ZY, Wu YC. Adv. Synth. Catal. 2020; 362: 1039
- 8c Zheng T, Li Z, Luo Y, Zhang J, Xu J. Tetrahedron 2023; 133: 133274
- 8d Cui HL, Chen XH. J. Org. Chem. 2023; 88: 11935
- 8e Zhou J, Huang X, Yu X, Yang L, Han JY, Lhazom T, Cui HL. J. Org. Chem. 2024; 89: 9789
- 8f Chen XH, Li YM, Huang X, Cui HL. J. Org. Chem. 2023; 88: 16400
- 8g Ebule R, Hammond GB, Xu B. Eur. J. Org. Chem. 2018; 4705
- 8h Sorabad GS, Maddani MR. New J. Chem. 2019; 43: 6563
- 8i Tong H, Chen C, Liu W, Pan Y, Duan L. Asian J. Org. Chem. 2019; 8: 479
- 8j Xiang JC, Wang JW, Yuan P, Ma JT, Wu AX, Liao ZX. J. Org. Chem. 2022; 87: 15101
- 9a Xiong X, Yeung YY. Angew. Chem. Int. Ed. 2016; 55: 16101
- 9b Xiong X, Yeung YY. ACS Catal. 2018; 8: 4033
- 9c Wang X, Chen Z, Liu Q, Lin W, Xiong X. Chem. Commun. 2022; 58: 13325
- 9d Xu H, Hu L, Zhu G, Zhu Y, Wang Y, Wu ZG, Zi Y, Huang W. RSC Adv. 2022; 12: 7115
- 9e Xu J, Li X, Li Q, Tian W, Yang X. Tetrahedron Lett. 2024; 136: 154928
- 9f Samanta RC, Yamamoto H. Chem. Eur. J. 2015; 21: 11976
- 10a Berger F, Plutschack MB, Riegger J, Yu W, Speicher S, Ho M, Frank N, Ritter T. Nature 2019; 567: 223
- 10b Ni S, Yan J, Tewari S, Reijerse EJ, Ritter T, Cornella J. J. Am. Chem. Soc. 2023; 145: 9988
- 11a Garay-Talero A, Acosta-Guzmán P, Gamba-Sánchez D. Adv. Synth. Catal. 2023; 365: 4576
- 11b Shi H, Zhang J, Li X, He J, Sun Y, Wu J, Du Y. Chem. Sci. 2024; 15: 13058
- 12a Qiao L, Cao X, Chai K, Shen J, Xu J, Zhang P. Tetrahedron Lett. 2018; 59: 2243
- 12b Uyanik M, Sahara N, Ishihara K. Eur. J. Org. Chem. 2019; 27
- 12c Krake EF, Baumann W. ChemistrySelect 2019; 4: 13479
- 12d Lakshmireddy VM, Naga Veera Y, Reddy TJ, Rao VJ, Raju BC. Asian J. Org. Chem. 2019; 8: 1380
- 12e Zhao M, Lu W. Org. Lett. 2017; 19: 4560
- 13a Ma Z, Lu H, Liao K, Chen Z. iScience 2020; 23: 101072
- 13b Ma Z, Chen Z. ACS Sustainable Chem. Eng. 2022; 10: 7453
- 14a Hu J, Zhou G, Tian Y, Zhao X. Org. Biomol. Chem. 2019; 17: 6342
- 14b Syvret RG, Butt KM, Nguyen TP, Bulleck VL, Rieth RD. J. Org. Chem. 2002; 67: 4487
- 14c Gradl S, Zantop V, Gmeiner P, Hübner H, Heinrich MR. ChemMedChem 2023; 18: e202300144
- 14d Daǧalan Z, Koçak R, Daştan A, Nişancl B. Org. Lett. 2022; 24: 8261
- 15a Mostafa MA. B, Bowley RM, Racys DT, Henry MC, Sutherland A. J. Org. Chem. 2017; 82: 7529
- 15b Yuan Y, Guo D, Liu Y, Wan C, Lu D, Yang H, Lu Y, Meng W, Wang H, Zhang X. Eur. J. Org. Chem. 2022; e202200387
- 15c Sahoo K, Panda N. Adv. Synth. Catal. 2022; 364: 1023
- 15d Shen C, Dagnaw WM, Fong CW, Lau KC, Chow CF. Chem. Commun. 2022; 58: 10627
- 16a Nishii Y, Ikeda M, Hayashi Y, Kawauchi S, Miura M. J. Am. Chem. Soc. 2020; 142: 1621
- 16b Mamontov A, Martin-Mingot A, Métayer B, Karam O, Zunino F, Bouazza F, Thibaudeau S. Chem. Eur. J. 2020; 26: 10411
- 16c Dinh AN, Maddox SM, Vaidya SD, Saputra MA, Nalbandian CJ, Gustafson JL. J. Org. Chem. 2020; 85: 13895
- 16d Wang W, Li X, Yang X, Ai L, Gong Z, Jiao N, Song S. Nat. Commun. 2021; 12: 3873
- 16e Ertürk E, Yeşil TA. J. Org. Chem. 2022; 87: 12558
- 16f Matsuoka J, Yano Y, Hirose Y, Mashiba K, Sawada N, Nakamura A, Maegawa T. J. Org. Chem. 2024; 89: 770
- 17a Winkler CK, Schrittwieser JH, Kroutil W. ACS. Cent. Sci. 2021; 7: 55
- 17b Frese M, Guzowska PH, Voß H, Sewald N. ChemCatChem 2014; 6: 1270
- 17c Smith DR. M, Uria AR, Helfrich EJ. N, Milbredt D, Van Pée KH, Piel J, Goss RJ. M. ACS Chem. Biol. 2017; 12: 1281
- 17d Payne JT, Poor CB, Lewis JC. Angew. Chem. Int. Ed. 2015; 54: 4226
- 17e Dong C, Flecks S, Unversucht S, Haupt C, Van Pée KH, Naismith JH. Science 2005; 309: 2216
- 17f Andorfer MC, Grob JE, Hajdin CE, Chael JR, Siuti P, Lilly J, Tan KL, Lewis JC. ACS Catal. 2017; 7: 1897
- 17g Peh GR, Tay T, Tan LL, Tiong E, Bi J, Goh YL, Ye S, Lin F, Tan CJ. X, Tan YZ, Wong J, Zhao H, Wong FT, Ang EL, Lim YH. Commun. Chem. 2024; 7: 1
- 17h Schroeder L, Frese M, Müller C, Sewald N, Kottke T. ChemCatChem 2018; 10: 3336
- 17i Andorfer MC, Park HJ, Vergara-Coll J, Lewis JC. Chem. Sci. 2016; 7: 3720
- 17j Hillwig ML, Liu X. Nat. Chem. Biol. 2014; 10: 921
- 17k McKinnie SM. K, Miles ZD, Jordan PA, Awakawa T, Pepper HP, Murray LA. M, George JH, Moore BS. J. Am. Chem. Soc. 2018; 140: 17840
- 17l Moore BS. Synlett 2018; 29: 401
- 17m Duewel S, Schmermund L, Faber T, Harms K, Srinivasan V, Meggers E, Hoebenreich S. ACS Catal. 2020; 10: 1272
Corresponding Author
Publikationsverlauf
Eingereicht: 23. September 2024
Angenommen nach Revision: 18. Oktober 2024
Accepted Manuscript online:
21. Oktober 2024
Artikel online veröffentlicht:
19. Dezember 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Cui HL. Org. Biomol. Chem. 2024; 22: 1580
- 1b Kachore A, Aggarwal V, Bala E, Singh H, Guleria S, Sharma S, Pathan S, Malik S, Selvaraj M, Assiri MA, Verma PK. Chem. Asian. J. 2024; 19: e202400391
- 1c Rodriguez RA, Pan CM, Yabe Y, Kawamata Y, Eastgate MD, Baran PS. J. Am. Chem. Soc. 2014; 136: 6908
- 1d Fukui N, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2015; 54: 6311
- 1e Ooi S, Yoneda T, Tanaka T, Osuka A. Chem. Eur. J. 2015; 21: 7772
- 1f Frabitius CR, Nowak MO, Wiklik KA, Sabiniarz MD, Buda AN, Guzik PS, Bialas AK, Pawlik HE, Boutard NF. WO Patent 180537A1, 2016
- 1g Huber T, Kaiser D, Rickmeier J, Magauer T. J. Org. Chem. 2015; 80: 2281
- 1h Haut FL, Habiger C, Wein LA, Wurst K, Podewitz M, Magauer T. J. Am. Chem. Soc. 2021; 143: 1216
- 2a Lu Z, Li Q, Tang M, Jiang P, Zheng H, Yang X. Chem. Commun. 2015; 51: 14852
- 2b Wang HY, Pu XQ, Yang XJ. J. Org. Chem. 2018; 83: 13103
- 2c Zhu Y, Huang J, Yang X. Chin. J. Org. Chem. 2019; 39: 1665
- 2d Pu XQ, Zhao HY, Lu ZH, He XP, Yang XJ. Eur. J. Org. Chem. 2016; 4526
- 2e Zhao H, Pu X, Yang X. Chin. J. Chem. 2017; 35: 1417
- 3 Pu X, Li Q, Lu Z, Yang X. Eur. J. Org. Chem. 2016; 5937
- 4a Misal B, Palav A, Ganwir P, Chaturbhuj G. Tetrahedron Lett. 2021; 63: 152689
- 4b Palav A, Misal B, Chaturbhuj G. J. Org. Chem. 2021; 86: 12467
- 4c Palav A, Misal B, Ganwir P, Badani P, Chaturbhuj G. Tetrahedron Lett. 2021; 73: 153094
- 4d Bhalerao S, Chaudhari H. Tetrahedron Lett. 2023; 123: 154539
- 4e Sun J, Guo Y, Xia J, Zheng G, Zhang Q. Molecules 2023; 28: 7420
- 5a Granados A, Jia Z, del Olmo M, Vallribera A. Eur. J. Org. Chem. 2019; 2812
- 5b Qu ZW, Zhu H, Grimme S. ChemCatChem 2020; 12: 6186
- 5c Levitre G, Granados A, Molander GA. Green Chem. 2023; 25: 560
- 5d Patil DB, Gámez-Montaño R, Ordoñez M, Solis-Santos M, Jiménez-Halla JO. C, Solorio-Alvarado CR. Eur. J. Org. Chem. 2022; e202201295
- 5e Nahide PD, Ramadoss V, Juárez-Ornelas KA, Satkar Y, Ortiz-Alvarado R, Cervera-Villanueva JM. J, Alonso-Castro ÁJ, Zapata-Morales JR, Ramírez-Morales MA, Ruiz-Padilla AJ, Deveze-Álvarez MA, Solorio-Alvarado CR. Eur. J. Org. Chem. 2018; 485
- 5f Himabindu V, Parvathaneni SP, Rao VJ. New J. Chem. 2018; 42: 18889
- 5g Fosu SC, Hambira CM, Chen AD, Fuchs JR, Nagib DA. Chem 2019; 5: 417
- 5h Yang F, Wang X, Zhao W, Yu F, Yu Z. ACS Omega 2021; 6: 34044
- 5i Liu T, Li Y, Jiang L, Wang J, Jin K, Zhang R, Duan C. Org. Biomol. Chem. 2020; 18: 1933
- 5j Zeng Z, Xun X, Huang L, Xu J, Zhu G, Li G, Sun W, Hong L, Wang R. Green Chem. 2018; 20: 2477
- 5k Peilleron L, Grayfer TD, Dubois J, Dodd RH, Cariou K. Beilstein J. Org. Chem. 2018; 14: 1103
- 5l Granados A, Shafir A, Arrieta A, Cossío FP, Vallribera A. J. Org. Chem. 2020; 85: 2142
- 6a Yuan Y, Lei A. Nat. Commun. 2020; 11: 802
- 6b Zhou Z, Yuan Y, Cao Y, Qiao J, Yao A, Zhao J, Zuo W, Chen W, Lei A. Chin. J. Chem. 2019; 37: 611
- 6c Yuan Y, Yao A, Zheng Y, Zhao J, Wen H, Lei A. iScience 2019; 12: 293
- 6d Liu X, Wu Z, Feng C, Liu W, Li M, Shen Z. Eur. J. Org. Chem. 2022; e202200262
- 6e Liu K, Deng Y, Song W, Song C, Lei A. Chin. J. Chem. 2020; 38: 1070
- 6f Liang Y, Lin F, Adeli Y, Jin R, Jiao N. Angew. Chem. Int. Ed. 2019; 58: 4566
- 6g Liu F, Wu N, Cheng X. Org. Lett. 2021; 23: 3015
- 6h Yu D, Ji R, Sun Z, Li W, Liu ZQ. Tetrahedron Lett. 2021; 86: 153514
- 6i Shen T, Xu Y, Jiang C, Lai Y, Wu L, Liu S, Zhang L, Qian C, Zhou S. ACS Sustainable Chem. Eng. 2024; 12: 3289
- 6j Liu Q, Sun B, Liu Z, Kao Y, Dong BW, Jiang S.-D, Li F, Liu G, Yang Y, Mo F. Chem. Sci. 2018; 9: 8731
- 6k Goljani H, Tavakkoli Z, Sadatnabi A, Nematollahi D. Org. Lett. 2020; 22: 5920
- 6l Li M, Zhang C, Zhou YQ, Liu Y, Zhao N, Li X, Gu LJ. Tetrahedron Lett. 2022; 89: 153602
- 6m Fu N, Sauer GS, Lin S. J. Am. Chem. Soc. 2017; 139: 15548
- 6n Allen BD. W, Hareram MD, Seastram AC, McBride T, Wirth T, Browne DL, Morrill LC. Org. Lett. 2019; 21: 9241
- 6o Dong X, Roeckl JL, Waldvogel SR, Morandi B. Science 2021; 371: 507
- 6p Harnedy J, Hareram MD, Tizzard GJ, Coles SJ, Morrill LC. Chem. Commun. 2021; 57: 12643
- 6q Fagnani DE, Kim D, Camarero SI, Alfaro JF, McNeil AJ. Nat. Chem. 2022; 15: 222
- 6r Zhang LM, Fu ZH, Yuan DF, Guo MZ, Li M, Wen LR, Zhang LB. Tetrahedron Lett. 2023; 114: 154244
- 6s Fan J, Li Y, Wei Y, Liu F, Lu D, Ye T, Dai J, Cheng X. J. Chem. Educ. 2023; 100: 3008
- 7a Noël T, Zysman-Colman E. Chem. Catal. 2022; 2: 468
- 7b Hering T, Mühldorf B, Wolf R, König B. Angew. Chem. Int. Ed. 2016; 55: 5342
- 7c Hering T, König B. Tetrahedron 2016; 72: 7821
- 7d Zhang L, Hu X. Chem. Sci. 2017; 8: 7009
- 7e Düsel SJ. S, König B. Eur. J. Org. Chem. 2020; 2020, 1491
- 7f Rogers DA, Bensalah AT, Espinosa AT, Hoerr JL, Refai FH, Pitzel AK, Alvarado JJ, Lamar AA. Org. Lett. 2019; 21: 4229
- 7g Rogers DA, Gallegos JM, Hopkins MD, Lignieres AA, Pitzel AK, Lamar AA. Tetrahedron 2019; 75: 130498
- 7h Rogers DA, Hopkins MD, Rajagopal N, Varshney D, Howard HA, Leblanc G, Lamar AA. ACS Omega 2020; 5: 7693
- 7i Pramanik M, Mathuri A, Sau S, Das M, Mal P. Org. Lett. 2021; 23: 8088
- 7j Deng M, Liu K, Yuan S, Luo G, Dian L. Org. Lett. 2023; 25: 4576
- 7k Xie W, Wang M, Yang S, Chen Y, Feng J, Huang Y. Org. Biomol. Chem. 2022; 20: 5319
- 7l Shen J, Wang Z, Shen C, Zhang P. Mol. Catal. 2023; 537: 112950
- 7m Xiang M, Zhou C, Yang XL, Chen B, Tung CH, Wu LZ. J. Org. Chem. 2020; 85: 9080
- 8a Song S, Li X, Wei J, Wang W, Zhang Y, Ai L, Zhu Y, Shi X, Zhang X, Jiao N. Nat. Catal. 2019; 3: 107
- 8b Ji YZ, Li HJ, Wang YR, Zhang ZY, Wu YC. Adv. Synth. Catal. 2020; 362: 1039
- 8c Zheng T, Li Z, Luo Y, Zhang J, Xu J. Tetrahedron 2023; 133: 133274
- 8d Cui HL, Chen XH. J. Org. Chem. 2023; 88: 11935
- 8e Zhou J, Huang X, Yu X, Yang L, Han JY, Lhazom T, Cui HL. J. Org. Chem. 2024; 89: 9789
- 8f Chen XH, Li YM, Huang X, Cui HL. J. Org. Chem. 2023; 88: 16400
- 8g Ebule R, Hammond GB, Xu B. Eur. J. Org. Chem. 2018; 4705
- 8h Sorabad GS, Maddani MR. New J. Chem. 2019; 43: 6563
- 8i Tong H, Chen C, Liu W, Pan Y, Duan L. Asian J. Org. Chem. 2019; 8: 479
- 8j Xiang JC, Wang JW, Yuan P, Ma JT, Wu AX, Liao ZX. J. Org. Chem. 2022; 87: 15101
- 9a Xiong X, Yeung YY. Angew. Chem. Int. Ed. 2016; 55: 16101
- 9b Xiong X, Yeung YY. ACS Catal. 2018; 8: 4033
- 9c Wang X, Chen Z, Liu Q, Lin W, Xiong X. Chem. Commun. 2022; 58: 13325
- 9d Xu H, Hu L, Zhu G, Zhu Y, Wang Y, Wu ZG, Zi Y, Huang W. RSC Adv. 2022; 12: 7115
- 9e Xu J, Li X, Li Q, Tian W, Yang X. Tetrahedron Lett. 2024; 136: 154928
- 9f Samanta RC, Yamamoto H. Chem. Eur. J. 2015; 21: 11976
- 10a Berger F, Plutschack MB, Riegger J, Yu W, Speicher S, Ho M, Frank N, Ritter T. Nature 2019; 567: 223
- 10b Ni S, Yan J, Tewari S, Reijerse EJ, Ritter T, Cornella J. J. Am. Chem. Soc. 2023; 145: 9988
- 11a Garay-Talero A, Acosta-Guzmán P, Gamba-Sánchez D. Adv. Synth. Catal. 2023; 365: 4576
- 11b Shi H, Zhang J, Li X, He J, Sun Y, Wu J, Du Y. Chem. Sci. 2024; 15: 13058
- 12a Qiao L, Cao X, Chai K, Shen J, Xu J, Zhang P. Tetrahedron Lett. 2018; 59: 2243
- 12b Uyanik M, Sahara N, Ishihara K. Eur. J. Org. Chem. 2019; 27
- 12c Krake EF, Baumann W. ChemistrySelect 2019; 4: 13479
- 12d Lakshmireddy VM, Naga Veera Y, Reddy TJ, Rao VJ, Raju BC. Asian J. Org. Chem. 2019; 8: 1380
- 12e Zhao M, Lu W. Org. Lett. 2017; 19: 4560
- 13a Ma Z, Lu H, Liao K, Chen Z. iScience 2020; 23: 101072
- 13b Ma Z, Chen Z. ACS Sustainable Chem. Eng. 2022; 10: 7453
- 14a Hu J, Zhou G, Tian Y, Zhao X. Org. Biomol. Chem. 2019; 17: 6342
- 14b Syvret RG, Butt KM, Nguyen TP, Bulleck VL, Rieth RD. J. Org. Chem. 2002; 67: 4487
- 14c Gradl S, Zantop V, Gmeiner P, Hübner H, Heinrich MR. ChemMedChem 2023; 18: e202300144
- 14d Daǧalan Z, Koçak R, Daştan A, Nişancl B. Org. Lett. 2022; 24: 8261
- 15a Mostafa MA. B, Bowley RM, Racys DT, Henry MC, Sutherland A. J. Org. Chem. 2017; 82: 7529
- 15b Yuan Y, Guo D, Liu Y, Wan C, Lu D, Yang H, Lu Y, Meng W, Wang H, Zhang X. Eur. J. Org. Chem. 2022; e202200387
- 15c Sahoo K, Panda N. Adv. Synth. Catal. 2022; 364: 1023
- 15d Shen C, Dagnaw WM, Fong CW, Lau KC, Chow CF. Chem. Commun. 2022; 58: 10627
- 16a Nishii Y, Ikeda M, Hayashi Y, Kawauchi S, Miura M. J. Am. Chem. Soc. 2020; 142: 1621
- 16b Mamontov A, Martin-Mingot A, Métayer B, Karam O, Zunino F, Bouazza F, Thibaudeau S. Chem. Eur. J. 2020; 26: 10411
- 16c Dinh AN, Maddox SM, Vaidya SD, Saputra MA, Nalbandian CJ, Gustafson JL. J. Org. Chem. 2020; 85: 13895
- 16d Wang W, Li X, Yang X, Ai L, Gong Z, Jiao N, Song S. Nat. Commun. 2021; 12: 3873
- 16e Ertürk E, Yeşil TA. J. Org. Chem. 2022; 87: 12558
- 16f Matsuoka J, Yano Y, Hirose Y, Mashiba K, Sawada N, Nakamura A, Maegawa T. J. Org. Chem. 2024; 89: 770
- 17a Winkler CK, Schrittwieser JH, Kroutil W. ACS. Cent. Sci. 2021; 7: 55
- 17b Frese M, Guzowska PH, Voß H, Sewald N. ChemCatChem 2014; 6: 1270
- 17c Smith DR. M, Uria AR, Helfrich EJ. N, Milbredt D, Van Pée KH, Piel J, Goss RJ. M. ACS Chem. Biol. 2017; 12: 1281
- 17d Payne JT, Poor CB, Lewis JC. Angew. Chem. Int. Ed. 2015; 54: 4226
- 17e Dong C, Flecks S, Unversucht S, Haupt C, Van Pée KH, Naismith JH. Science 2005; 309: 2216
- 17f Andorfer MC, Grob JE, Hajdin CE, Chael JR, Siuti P, Lilly J, Tan KL, Lewis JC. ACS Catal. 2017; 7: 1897
- 17g Peh GR, Tay T, Tan LL, Tiong E, Bi J, Goh YL, Ye S, Lin F, Tan CJ. X, Tan YZ, Wong J, Zhao H, Wong FT, Ang EL, Lim YH. Commun. Chem. 2024; 7: 1
- 17h Schroeder L, Frese M, Müller C, Sewald N, Kottke T. ChemCatChem 2018; 10: 3336
- 17i Andorfer MC, Park HJ, Vergara-Coll J, Lewis JC. Chem. Sci. 2016; 7: 3720
- 17j Hillwig ML, Liu X. Nat. Chem. Biol. 2014; 10: 921
- 17k McKinnie SM. K, Miles ZD, Jordan PA, Awakawa T, Pepper HP, Murray LA. M, George JH, Moore BS. J. Am. Chem. Soc. 2018; 140: 17840
- 17l Moore BS. Synlett 2018; 29: 401
- 17m Duewel S, Schmermund L, Faber T, Harms K, Srinivasan V, Meggers E, Hoebenreich S. ACS Catal. 2020; 10: 1272