Subscribe to RSS
DOI: 10.1055/a-2457-0045
Recent Advances in Transition-Metal-Catalyzed Enantioconvergent Transformations of Epoxides
We are grateful to the National Natural Science Foundation of China (22071073, 22301092, and 22271112), the Fundamental Research Funds for the Central Universities, China (CCNU24JCPT016), the Wuhan Top-Notch Talent Program, and start-up funding from Central China Normal University (CCNU) for financial support.
Abstract
In recent years, asymmetric ring-opening reactions of epoxides have emerged as a compelling strategy for constructing chiral building blocks in organic synthesis. Among these, transition-metal-catalyzed stereoselective transformations of epoxides have garnered particular attention for their high efficiency and cost-effectiveness. The increasing interest and advancements in this area have spurred exploration into diverse transition-metal catalysts and chiral ligands, highlighting their potential to facilitate a wide range of transformations with enhanced efficiency and flexibility. This short review showcases significant achievements in transition-metal-catalyzed enantioconvergent transformations of epoxides, emphasizing their scope of application and reaction mechanisms.
1 Introduction
2 Palladium-Catalyzed Enantioconvergent Cross-Coupling of Epoxides
3 Nickel-Catalyzed Enantioconvergent Cross-Coupling of Epoxides
4 Titanium-Catalyzed Enantioconvergent Cross-Coupling of Epoxides
5 Iridium-Catalyzed Enantioconvergent Cross-Coupling of Epoxides
6 Cobalt-Catalyzed Enantioconvergent Cross-Coupling of Epoxides
7 Copper-Catalyzed Enantioconvergent Cross-Coupling of Epoxides
8 Conclusions and Outlook
Key words
transition-metal-catalyzed - epoxides - enantioconvergent - cross-coupling - functionalizationPublication History
Received: 30 July 2024
Accepted after revision: 29 October 2024
Accepted Manuscript online:
29 October 2024
Article published online:
25 November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Bernice F, Kilcrease C. Curr. Infect. Dis. Rep. 2022; 24: 89
- 2 Walsh SP, Severino A, Zhou C, He J, Liang G.-B, Tan CP, Cao J, Eiermann GJ, Xu L, Salituro G. Bioorg. Med. Chem. Lett. 2011; 21: 3390
- 3 Jacobsen EN. Acc. Chem. Res. 2000; 33: 421
- 4 Lidskog A, Li Y, Wärnmark K. Catalysts 2020; 10: 705
- 5 Pastor I, Yus M. Curr. Org. Chem. 2005; 9: 1
- 6 Halpern J, Trost BM. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5347
- 7 Walsh PJ, Kozlowski MC. Fundamentals of Asymmetric Catalysis . University Science Books; Sausalito (CA, USA): 2009
- 8 Zhang C, Geng X, Zhang X, Gnanou Y, Feng X. Prog. Polym. Sci. 2023; 136: 101644
- 9 Sarazin Y, Carpentier J.-F. Chem. Rev. 2015; 115: 3564
- 10 Longo JM, Sanford MJ, Coates GW. Chem. Rev. 2016; 116: 15167
- 11 Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H. Chem. Rev. 2016; 116: 2170
- 12 Nugent WA. J. Am. Chem. Soc. 1992; 114: 2768
- 13 Martinez LE, Leighton JL, Carsten DH, Jacobsen EN. J. Am. Chem. Soc. 1995; 117: 5897
- 14 Iida T, Yamamoto N, Sasai H, Shibasaki M. J. Am. Chem. Soc. 1997; 119: 4783
- 15 Iida T, Yamamoto N, Matsunaga S, Woo HG, Shibasaki M. Angew. Chem. Int. Ed. 1998; 37: 2223
- 16 Schaus SE, Jacobsen EN. Org. Lett. 2000; 2: 1001
- 17 Schneider C, Sreekanth AR, Mai E. Angew. Chem. Int. Ed. 2004; 116: 5809
- 18 Plancq B, Ollevier T. Chem. Commun. 2012; 48: 3806
- 19 Ready JM, Jacobsen EN. J. Am. Chem. Soc. 2001; 123: 2687
- 20 Ready JM, Jacobsen EN. Angew. Chem. Int. Ed. 2002; 41: 1374
- 21 Arai K, Salter MM, Yamashita Y, Kobayashi S. Angew. Chem. Int. Ed. 2007; 46: 955
- 22 Arai K, Lucarini S, Salter MM, Ohta K, Yamashita Y, Kobayashi S. J. Am. Chem. Soc. 2007; 129: 8103
- 23 Kalow JA, Doyle AG. J. Am. Chem. Soc. 2010; 132: 3268
- 24 Kalow JA, Doyle AG. J. Am. Chem. Soc. 2011; 133: 16001
- 25 Tokunaga M, Larrow JF, Kakiuchi F, Jacobsen EN. Science 1997; 277: 936
- 26 Ready JM, Jacobsen EN. J. Am. Chem. Soc. 1999; 121: 6086
- 27 Kim SK, Jacobsen EN. Angew. Chem. Int. Ed. 2004; 43: 3952
- 28 Shaw S, White JD. Chem. Rev. 2019; 119: 9381
- 29 Clarke RM, Storr T. Dalton Trans. 2014; 43: 9380
- 30 Matsunaga S, Shibasaki M. Synthesis 2013; 45: 421
- 31 Abd El Sater M, Jaber N, Schulz E. ChemCatChem 2019; 11: 3662
- 32 Zhang X.-M, Li B.-S, Wang S.-H, Zhang K, Zhang F.-M, Tu Y.-Q. Chem. Sci. 2021; 12: 9262
- 33 Ma D, Miao C.-B, Sun J. J. Am. Chem. Soc. 2019; 141: 13783
- 34 Wu H, Wang Q, Zhu J. J. Am. Chem. Soc. 2019; 141: 11372
- 35 Bhat V, Welin ER, Guo X, Stoltz BM. Chem. Rev. 2017; 117: 4528
- 36 Trost BM. J. Am. Chem. Soc. 1999; 121: 10834
- 37 Parasram M, Shields BJ, Ahmad O, Knauber T, Doyle AG. ACS Catal. 2020; 10: 5821
- 38 Lin S, Chen Y, Li F, Shi C, Shi L. Chem. Sci. 2020; 11: 839
- 39 Zhang Z, Richrath RB, Gansäuer A. ACS Catal. 2019; 9: 3208
- 40 Trost BM, Vranken DL. V. Chem. Rev. 1996; 96: 395
- 41 Trost BM, Jiang C. J. Am. Chem. Soc. 2001; 123: 12907
- 42 Trost BM, Sacchi KL, Schroeder GM, Asakawa N. Org. Lett. 2002; 4: 3427
- 43 Trost BM, Dogra K, Franzini M. J. Am. Chem. Soc. 2004; 126: 1944
- 44 Du C, Li L, Li Y, Xie Z. Angew. Chem. Int. Ed. 2009; 48: 7853
- 45 Mangion I, Strotman N, Drahl M, Imbriglio J, Guidry E. Org. Lett. 2009; 11: 3258
- 46 Li G, Feng X, Du H. Org. Biomol. Chem. 2015; 13: 5826
- 47 Rajkumar S, Clarkson GJ, Shipman M. Org. Lett. 2017; 19: 2058
- 48 Doyle MG. J, Gabbey AL, McNutt W, Lundgren RJ. Angew. Chem. Int. Ed. 2021; 60: 26459
- 49 Song C, Zhang H.-H, Yu S. ACS Catal. 2022; 12: 1428
- 50 Zhao Y, Weix DJ. J. Am. Chem. Soc. 2015; 137: 3237
- 51 Banerjee A, Yamamoto H. Org. Lett. 2017; 19: 4363
- 52 Wu L, Yang G, Zhang W. CCS Chem. 2020; 2: 623
- 53 Lau SH, Borden MA, Steiman TJ, Wang LS, Parasram M, Doyle AG. J. Am. Chem. Soc. 2021; 143: 15873
- 54 Höthker S, Mika R, Goli H, Gansäuer A. Chem. Eur. J. 2023; 29: e202301031
- 55 Höthker S, Plato A, Grimme S, Qu Z.-W, Gansäuer A. Angew. Chem. Int. Ed. 2024; 63: e202405911
- 56 Shen J, Xu Z, Yang S, Li S, Jiang J, Zhang Y.-Q. J. Am. Chem. Soc. 2023; 145: 21122
- 57 Li S, Zhu H, Li L, Chen W, Jiang J, Qu ZW, Grimme S, Zhang YQ. Angew. Chem. Int. Ed. 2023; 62: e202309525
- 58 Feng J, Garza VJ, Krische MJ. J. Am. Chem. Soc. 2014; 136: 8911
- 59 Xu G, Yang G, Wang Y, Shao P.-L, Yau JN. N, Liu B, Zhao Y, Sun Y, Xie X, Wang S, Zhang Y, Xia L, Zhao Y. Angew. Chem. Int. Ed. 2019; 58: 14082
- 60 Wu L, Shao Q, Kong L, Chen J, Wei Q, Zhang W. Org. Chem. Front. 2020; 7: 862
- 61 Li J, Li S, Cui G.-H, Yuan K, Wang C, Yang C, Zhang G, Guo R. ACS Catal. 2024; 14: 7553