Subscribe to RSS
DOI: 10.1055/a-2467-3362
Relationship between prenatal ultrasound signs and genetic abnormalities for fetal malformations of cortical development
Zusammenhang zwischen pränatalen Ultraschallzeichen und genetischen Anomalien für fetale Fehlbildungen der kortikalen Entwicklung Supported by: National Natural Science Foundation of China 82371965Supported by: Capital’s Funds for Health Improvement and Research CFH 2020-2-4074
Abstract
Purpose
To explore the relationship between ultrasound signs of suspected fetal malformation of cortical development (MCD) and genetic MCD.
Materials and Methods
The retrospective study involved fetuses with one of the following 10 neurosonography (NSG) signs: (A) abnormal development of the Sylvian fissure; (B) delayed achievement of cortical milestones; (C) premature or aberrant appearance of sulcation; (D) irregular border of the ventricular wall or irregular shape of the ventricle; (E) abnormal shape or orientation of the sulci; (F) hemispheric asymmetry; (G) non-continuous cerebral cortex; (H) intraparenchymal echogenic nodules; (I) persistent ganglionic eminence (GE) or GE cavitation; (J) abnormal cortical lamination.
Results
95 fetuses were included in the study. Chromosomal microarray (CMA) combined with exome sequencing (ES) was available in 40 fetuses, CMA was abnormal in nine and ES in 22. Sign C (7/7, 100%), sign H (2/2, 100%), sign A (18/19, 94.7%), and sign B (12/13, 92.3%) were the signs leading to the highest probability of genetic MCD. The incidence of genetic MCD for sign E, sign I, and sign D was 66.7–73.7%. Only one or none of the fetuses with sign J, sign F, or sign G underwent CMA+ES. The signs in the fetuses with FGFR3, CCND2, FLNA, or TSC2 mutations had the expected features. The other fetuses with different gene mutations showed several non-specific NSG signs.
Conclusion
Several reliable signs for genetic MCD can be detected by NSG, and the probability varies with different signs. Most signs are not associated with a specific gene. Therefore, CMA combined with ES is preferred.
Zusammenfassung
Ziel
Untersuchung des Zusammenhangs zwischen den Ultraschallzeichen bei Verdacht auf eine fetale Fehlbildung der kortikalen Entwicklung (MCD) und einer genetischen MCD.
Material und Methode
Die retrospektive Studie umfasste Föten mit einem der folgenden 10 neurosonografischen Zeichen und Merkmalen (NSG): (A) abnorme Entwicklung der Sylvischen Fissur; (B) verzögertes Erreichen der kortikalen Entwicklungsstadien; (C) verfrühtes oder abweichendes Auftreten der Sulkation; (D) unregelmäßiger Rand der Ventrikelwand oder unregelmäßige Form des Ventrikels; (E) abnorme Form oder Ausrichtung der Sulci; (F) hemisphärische Asymmetrie; (G) nicht kontinuierliche Großhirnrinde; (H) intraparenchymale echogene Knötchen; (I) persistierende ganglionäre Eminenz (GE) oder GE-Kavitation; (J) abnorme kortikale Laminierung.
Ergebnisse
95 Föten wurden in die Studie inkludiert. Chromosomen-Mikroarray (CMA), kombiniert mit Exom-Sequenzierung (ES), war bei 40 Föten verfügbar, CMA war bei 9 und ES bei 22 abnormal. Merkmal C (7/7, 100%), H (2/2, 100%), A (18/19, 94,7%) und B (12/13, 92,3%) waren die Veränderungen mit der höchsten Wahrscheinlichkeit für eine genetische MCD. Die Inzidenz der genetischen MCD für die Zeichen E, I und D lag bei 66,7–73,7%. Nur bei einem oder keinem der Föten mit Merkmal J, F oder G wurde eine CMA+ES durchgeführt. Die meisten Föten mit verschiedenen Genmutationen zeigten verschiedene unspezifische NSG-Zeichen.
Schlussfolgerung
Mit dem NSG können mehrere zuverlässige Zeichen für eine genetische MCD festgestellt werden. Die meisten Zeichen sind nicht mit einem bestimmten Gen verbunden. Daher ist die CMA in Kombination mit ES vorzuziehen.
Keywords
malformations of cortical development - neurosonography - chromosomal microarray - exome sequencing - prenatal ultrasoundPublication History
Received: 14 May 2024
Accepted after revision: 12 November 2024
Article published online:
19 December 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Severino M, Geraldo AF, Utz N. et al. Definitions and classification of malformations of cortical development: practical guidelines. Brain 2020; 143: 2874-2894
- 2 Barkovich AJ, Guerrini R, Kuzniecky RI. et al. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012; 135: 1348-1369
- 3 Aronica E, Becker AJ, Spreafico R. Malformations of cortical development. Brain Pathol 2012; 22: 380-401
- 4 Malinger G, Kidron D, Schreiber L. et al. Prenatal diagnosis of malformations of cortical development by dedicated neurosonography. Ultrasound Obste Gyneco 2007; 29: 178-191
- 5 Lerman-Sagie T, Leibovitz Z. Malformations of Cortical Development: From Postnatal to Fetal Imaging. Can J Neurol Sci 2016; 43: 611-618
- 6 Pooh RK, Machida M, Nakamura T. et al. Increased Sylvian fissure angle as early sonographic sign of malformation of cortical development. Ultrasound Obstet Gynecol 2019; 54: 199-206
- 7 Lerman-Sagie T, Pogledic I, Leibovitz Z. et al. A practical approach to prenatal diagnosis of malformations of cortical development. Eur J Paediatr Neurol 2021; 34: 50-61
- 8 Malinger G, Monteagudo A, Pilu G. et al. Timor’s Ultrasonography of the Prenatal Brain, Fourth Edition. In: Malinger G, Bimbaum R, Haratz KK. Malformation of Cortical Development: Proliferation Disorders. McGraw-Hill; 2023: 277-297
- 9 Malinger G, Monteagudo A, Pilu G. et al. Timor’s Ultrasonography of the Prenatal Brain, Fourth Edition. In: Malinger G, Har-Toov J, Ben-Sira L, Lerman-Sagie T. Malformation of Cortical Development: Migration and Post Migration Disorders. McGraw-Hill; 2023: 299-325
- 10 Haratz KK, Birnbaum R, Kidron D. et al. Malformation of cortical development with abnormal cortex: early ultrasound diagnosis between 14 and 24 weeks of gestation. Ultrasound Obstet Gynecol 2023; 61: 559-565
- 11 Shinar S, Haratz KK, Salemnick Y. et al. OC05.03: Malformations of cortical development: early prenatal ultrasound diagnosis. Ultrasound Obstet Gynecol 2016; 48
- 12 Malinger G, Paladini D, Haratz KK. et al. ISUOG Practice Guidelines (updated): sonographic examination of the fetal central nervous system. Part 1: performance of screening examination and indications for targeted neurosonography. Ultrasound Obstet Gynecol 2020; 56: 476-484
- 13 Paladini D, Malinger G, Birnbaum R. et al. ISUOG Practice Guidelines (updated): sonographic examination of the fetal central nervous system. Part 2: performance of targeted neurosonography. Ultrasound Obstet Gynecol 2021; 57: 661-671
- 14 Righini A, Frassoni C, Inverardi F. et al. Bilateral cavitations of ganglionic eminence: a fetal MR imaging sign of halted brain development. Am J Neuroradiol 2013; 34: 1841-1845
- 15 Scarabello M, Righini A, Severino M. et al. Ganglionic Eminence Anomalies and Coexisting Cerebral Developmental Anomalies on Fetal MR Imaging: Multicenter-Based Review of 60 Cases. Am J Neuroradiol 2021; 42: 1151-1156
- 16 Richards S, Aziz N, Bale S. et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17: 405-424
- 17 Riggs ER, Andersen EF, Cherry AM. et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med 2020; 22: 245-257
- 18 Guerrini R, Dobyns WB. Malformations of cortical development: clinical features and genetic causes. Lancet Neurol 2014; 13: 710-726
- 19 Wang LL, Pan PS, Ma H. et al. Malformations of cortical development: Fetal imaging and genetics. Mol Genet Genomic Med 2024; 12 (04) e2440
- 20 Ramirez Zegarra R, Casati D, Volpe N. et al. The “cortical invagination sign”: a midtrimester sonographic marker of unilateral cortical focal dysgyria in fetuses with complete agenesis of the corpus callosum. Am J Obstet Gynecol MFM 2023; 5: 101198
- 21 Parrini E, Conti V, Dobyns WB. et al. Genetic Basis of Brain Malformations. Mol Syndromol 2016; 7: 220-233
- 22 Guimaraes CVA, Dahmoush HM. Imaging phenotype correlation with molecular and molecular pathway defects in malformations of cortical development. Pediatr Radiol 2020; 50: 1974-1987
- 23 D’Gama AM, Poduri A. Precision Therapy for Epilepsy Related to Brain Malformations. Neurotherapeutics 2021; 18: 1548-1563
- 24 Itoh K, Pooh R, Kanemura Y. et al. Brain malformation with loss of normal FGFR3 expression in thanatophoric dysplasia type I. Neuropathology 2013; 33: 663-666
- 25 Wortmann SB, Reimer A, Creemers JW. et al. Prenatal diagnosis of cerebral lesions in Tuberous sclerosis complex (TSC). Case report and review of the literature. Eur J Paediatr Neurol 2008; 12: 123-126
- 26 Deloison B, Sonigo P, Millischer-Bellaiche AE. et al. Prenatally diagnosed periventricular nodular heterotopia: Further delineation of the imaging phenotype and outcome. Eur J Med Genet 2018; 61: 773-782
- 27 Nakamura K, Kato M, Tohyama J. et al. AKT3 and PIK3R2 mutations in two patients with megalencephaly-related syndromes: MCAP and MPPH. Clin Genet 2014; 85: 396-398
- 28 Fong KW, Ghai S, Toi A. et al. Prenatal ultrasound findings of lissencephaly associated with Miller-Dieker syndrome and comparison with pre- and postnatal magnetic resonance imaging. Ultrasound Obstet Gynecol 2004; 24: 716-723
- 29 Romaniello R, Arrigoni F, Fry AE. et al. Tubulin genes and malformations of cortical development. Eur J Med Genet 2018; 61: 744-754
- 30 Paladini D, Biancotto G, Dellasala F. et al. Neurosonographic and MRI diagnosis of fetal cerebral lesions heralding polymicrogyria. Ultrasound Obstet Gynecol 2024; 63: 293-302