Synthesis
DOI: 10.1055/a-2685-9083
Paper
Published as part of the Special Issue in Honor of Prof. Franziska Schoenebeck, the 2025 Women in Chemistry Award Winner

Desaturation of Amides via Bismuth Photocatalysis

Autor*innen

  • Byeongdo Roh

    1   Department of Organometallic Chemistry, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz, 1, 45470 Mülheim an der Ruhr, Germany
  • Josep Cornella

    1   Department of Organometallic Chemistry, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz, 1, 45470 Mülheim an der Ruhr, Germany

Gefördert durch: Verband der Chemischen Industrie
Gefördert durch: Max-Planck-Gesellschaft
Gefördert durch: Novartis Early Career Award Foundation
Gefördert durch: Deutsche Forschungsgemeinschaft EXC 2033-390677874-RESOLV
The financial support for this work was provided by Max-Planck-Gesellschaft, Max-Planck-Institut für Kohlen-forschung, Fonds der Chemischen Industrie (FCI-VCI), NECA foundation, and by the Deutsche Forschungsge-meinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2033-390677874 -RESOLV.


Graphical Abstract

Abstract

Bismuth redox catalysis has been intensively developed in recent years, enabling diverse transformations that were previously thought to be achievable only through transition metal catalysis. In this study, we present the desaturation of amides to generate the enamides, an important structural motif in pharmaceuticals, via bismuth photocatalysis. The protocol involves a combination of unique mechanistic steps recently uncovered for bismuth thus allowing for the translation of a canonical transition metal–mediated transformation into a main group–based catalytic system.



Publikationsverlauf

Eingereicht: 23. Juni 2025

Angenommen nach Revision: 18. August 2025

Accepted Manuscript online:
18. August 2025

Artikel online veröffentlicht:
02. Oktober 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

    • 1a Flatt B, Martin R, Wang TL. et al. J Med Chem 2009; 52: 904
    • 1b Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Rey JMG, Garcia-Garcia A. Cancer Treat Rev 2009; 35: 707
    • 1c Fu J, Si P, Zheng M. et al. Bioorg Med Chem Lett 2012; 22: 6848
    • 1d Poulsen TB. Acc Chem Res 1830; 2021: 54

      For selected examples for desaturation via C–H activation strategies, see:
    • 3a Bolig AD, Brookhart M. J Am Chem Soc 2007; 129: 14544
    • 3b Voica A-F, Mendoza A, Gutekunst WR, Fraga JO, Baran PS. Nat Chem 2012; 4: 629
    • 3c Bheeter CB, Jin R, Bera JK, Dixneuf PH, Doucet H. Adv Synth Catal 2014; 356: 119
    • 3d Chuentragool P, Parasram M, Shi Y, Gevorgyan V. J Am Chem Soc 2018; 140: 2465
    • 3e Li G, Kates PA, Dilger AK, Cheng PT, Ewing WR, Groves JT. ACS Catal 2019; 9: 9513
    • 3f Huang L, Bismuto A, Rath SA, Trapp N, Morandi B. Angew Chem, Int Ed 2021; 60: 7290
    • 3g Spieß P, Berger M, Kaiser D, Maulide N. J Am Chem Soc 2021; 143: 10524
    • 3h Xia Y, Jana K, Studer A. Chem – Eur J 2021; 27: 16621
    • 3i Stateman LM, Dare RM, Paneque AN, Nagib DA. Chem 2022; 8: 210
    • 3j Yang S, Fan H, Xie L, Dong G, Chen M. Org Lett 2022; 24: 6460
    • 3k Wang C, Azofra LM, Dam P. et al. ACS Catal 2022; 12: 8868
    • 3l Li X, Cheng Z, Liu J, Zhang Z, Song S, Jiao N. Chem Sci 2022; 13: 9056-9061
    • 3m Ritu, Kolb D, Jain N, König B. Adv Synth Catal 2023; 365: 605
    • 3n An S, Lai G, Liu WH. Chem Sci 2024; 15: 15385
    • 3o Zhao C, Gao R, Ma W. et al. Nat Commun 2024; 15: 4329
    • 3p Novaes LFT, Ho JSK, Mao K, Villemure E, Terrett JA, Lin S. J Am Chem Soc 2024; 146: 22982

      For recent reviews, see:
    • 4a Lipshultz JM, Li G, Radosevich AT. J Am Chem Soc 2021; 143: 1699
    • 4b Moon HW, Cornella J. ACS Catal 2022; 12: 1382
    • 4c Mato M, Cornella J. Angew Chem, Int Ed 2024; 63: e202315046
    • 5a Wang F, Planas O, Cornella J. J Am Chem Soc 2019; 141: 4235
    • 5b Pang Y, Leutzsch M, Nöthling N, Cornella J. J Am Chem Soc 2020; 142: 19473
    • 5c Pang Y, Leutzsch M, Nöthling N, Katzenburg F, Cornella J. J Am Chem Soc 2021; 143: 12487
    • 5d Mato M, Spinnato D, Leutzsch M, Moon HW, Reijerse EJ, Cornella J. Nat Chem 2023; 15: 1138
    • 5e Mato M, Bruzzese PC, Takahashi F. et al. J Am Chem Soc 2023; 145: 18742
    • 5f Moon HW, Wang F, Bhattacharyya K. et al. Angew Chem, Int Ed 2023; 62: e202313578
    • 5g Tsuruta T, Spinnato D, Moon HW, Leutzsch, Cornella J. J Am Chem Soc 2023; 145: 25538
    • 5h Ni S, Spinnato D, Cornella J. J Am Chem Soc 2024; 146: 22140
    • 5i Beland V, Nöthling N, Leutzsch M, Cornella J. J Am Chem Soc 2024; 146: 25409
    • 5j Mato M, Stamoulis A, Cleto-Bruzzese P, Cornella J. Angew Chem, Int Ed 2024; 64: e202418367
    • 5k Moon HW, Nöthling N, Leutzsch M, Kuziola J, Cornella J. Angew Chem, Int Ed 2024; 64: e202417864
    • 5l Stamoulis A, Mato M, Cleto Bruzzese P. et al. J Am Chem Soc 2025; 147: 6037
    • 6a Planas O, Wang F, Leutszch M, Cornella J. Science 2020; 367: 313
    • 6b Planas O, Peciukenas V, Cornella J. J Am Chem Soc 2020; 142: 11382
    • 6c Planas O, Peciukenas V, Leutzsch M, Nöthling N, Pantazis D, Cornella J. J Am Chem Soc 2022; 144: 14489
    • 6d Faber T, Engelhardt S, Cornella J. Angew Chem, Int Ed 2025; e202424698
    • 7a Magre M, Cornella J. J Am Chem Soc 2021; 143: 21497
    • 7b Yang X, Kuziola J, Beland V, Leutzsch M, Bures J, Cornella J. Angew Chem, Int Ed 2023; 62: e202306447
  • 8 Šimon P, De Proft F, Jambor R, Růžička A, Dostál L. Angew Chem, Int Ed 2010; 49: 5468
  • 9 Hejda M, Jirásko R, Růžička A, Jambor R, Dostál L. Organometallics 2020; 39: 4320
  • 10 Guo W, Wang Q, Zhu J. Chem Soc Rev 2021; 50: 7359
  • 11 Yi L, Kong D, Kale AP. et al. Angew Chem, Int Ed 2024; 63: e202411961
    • 12a Constantin T, Zanini M, Regni A, Sheikh NS, Julia F, Leonori D. Science 2020; 367: 1021
    • 12b Juliá F, Constantin T, Leonori D. Chem Rev 2022; 122: 2292