Subscribe to RSS
DOI: 10.1055/a-2688-2245
Digital statt diskontinuierlich
Wie Wearables neue Handlungsspielräume im Kampf gegen Failure to Rescue schaffenDigital Instead of DiscontinuousHow Wearables Create New Opportunities in the Struggle Against Failure to RescueAuthors
Medical Wearables bieten das Potenzial, Patienten auf Normalstationen kontinuierlich zu überwachen und so postoperative Komplikationen früher zu erkennen. Trotz technischer und struktureller Hürden – von Alarm Fatigue über unzureichende Digitalisierung bis zu offenen Fragen des Datenschutzes – zeichnet sich ein vielversprechender Nutzen für Patientensicherheit und Entlastung des Pflegepersonals ab. Voraussetzung für den Weg in die Regelversorgung sind jedoch robuste Evidenz, klare Regularien und interdisziplinäre Digitalisierungskonzepte.
Abstract
Medical wearables are considered a promising solution for mobile and continuous vital sign monitoring in general wards, with the objective of significantly reducing the existing monitoring deficit for high-risk patients in German hospitals and consequently lowering post-operative mortality and „failure to rescue“ rates. The integration of wearables into early warning systems such as the NEWS (National Early Warning Score) and their intelligent combination with predictive algorithms, has the potential to provide new perspectives, but such integration has not yet been implemented. Technical challenges include the high incidence of false alarms and the subsequent issue of alarm fatigue. The utilisation of artificial intelligence (AI) for the detection of artefacts presents a viable solution to this issue; however, it necessitates the development and validation of complex, device-specific software. In addition to these challenges, there are structural issues that require attention, including the inadequate digitalization of many hospitals, the high investment and maintenance costs that are yet to be reimbursed, and concerns regarding data protection and the clarification of responsibilities in the domain of IT security. Despite these challenges, the potential is widely acknowledged, particularly in terms of enhancing patient safety and reducing the workload of nursing staff. Numerous visions for the future, including non-invasive haemodynamic or biochemical monitoring, are already being developed, but clinically reliable sensors are not yet ready for use. Prospective studies, regulatory guidelines and a clear roadmap for digital transformation are required. It is asserted that the transition of medical wearables from a niche market to standard care can only be achieved through a combination of technical innovation, clinical validation and political decision-making.
-
Postoperative Komplikationen sind oft vermeidbar – Wearables können durch kontinuierliche Überwachung die entscheidende Lücke zwischen Normalstation und Intensivmedizin schließen.
-
Der größte Nutzen zeigt sich in Studien durch weniger Todesfälle, Notfallinterventionen und Intensivverlegungen, besonders bei älteren, multimorbiden und postoperativen Risikopatient*innen.
-
Trotz ihres Potenzials sind aktuelle Systeme noch durch Artefaktanfälligkeit, Fehlalarme und eingeschränkte Messgenauigkeit limitiert.
-
KI-gestützte Algorithmen und die Anbindung an etablierte Frühwarnsysteme wie den NEWS (Modified Early Warning Score) erhöhen die Verlässlichkeit und klinische Sicherheit.
-
Zukünftige Innovationen wie nadelfreie Glukosemessung, Lab-on-a-Patch oder textile Sensoren könnten Wearables in die Regelversorgung bringen – wenn Infrastruktur, Validierung und Regulierung mitziehen.
Publication History
Article published online:
08 January 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Pearse RM, Moreno RP, Bauer P. et al. Mortality after surgery in Europe: a 7 day cohort study. Lancet 2012; 380: 1059-1065
- 2 Nepogodiev D, Martin J, Biccard B. et al. Global burden of postoperative death. Lancet 2019; 393: 401
- 3 Spence J, LeManach Y, Chan MTV. et al. Association between complications and death within 30 days after noncardiac surgery. CMAJ 2019; 191: E830-E837
- 4 Ghaferi AA, Birkmeyer JD, Dimick JB. Variation in hospital mortality associated with inpatient surgery. N Engl J Med 2009; 361: 1368-1375
- 5 Ghaferi AA, Birkmeyer JD, Dimick JB. Hospital volume and failure to rescue with high-risk surgery. Med Care 2011; 49: 1076-1081
- 6 Mehta A, Efron DT, Stevens K. et al. Hospital variation in mortality after emergent bowel resections: the role of failure-to-rescue. J Trauma Acute Care Surg 2018; 84: 702-710
- 7 Hillman KM, Bristow PJ, Chey T. et al. Duration of life-threatening antecedents prior to intensive care admission. Int Care Med 2002; 28: 1629-1634
- 8 Guan G, Lee CMY, Begg S. et al. The use of early warning system scores in prehospital and emergency department settings to predict clinical deterioration: a systematic review and meta-analysis. PLoS One 2022; 17: e0265559
- 9 Subbe CP, Kruger M, Rutherford P. et al. Validation of a modified Early Warning Score in medical admissions. QJM 2001; 94: 521-526
- 10 Abe S, Wannigama DL. Quick Sequential Organ Failure Assessment (qSOFA) and performance status scoring systems as prognostic predictors in pneumococcal community-acquired pneumonia. Cureus 2024; 16: e73201
- 11 Knaus WA, Draper EA, Wagner DP. et al. APACHE II: a severity of disease classification system. Crit Care Med 1985; 13: 818-829
- 12 Sun Z, Sessler DI, Dalton JE. et al. Postoperative hypoxemia is common and persistent: a prospective blinded observational study. Anesth Analg 2015; 121: 709-715
- 13 Sessler DI, Meyhoff CS, Zimmerman NM. et al. Period-dependent associations between hypotension during and for four days after noncardiac surgery and a composite of myocardial infarction and death: a substudy of the POISE-2 Trial. Anesthesiology 2018; 128: 317-327
- 14 Bignami EG, Panizzi M, Bezzi F. et al. Wearable devices as part of postoperative early warning score systems: a scoping review. J Clin Monit Comput 2025; 39: 233-244
- 15 Rowland BA, Motamedi V, Michard F. et al. Impact of continuous and wireless monitoring of vital signs on clinical outcomes: a propensity-matched observational study of surgical ward patients. Br J Anaesth 2024; 132: 519-527
- 16 Lockhorst EW, van Noordenne M, Klouwens L. et al. Improving diagnosis of early complications (<1 week) through continuous vital sign monitoring following oncological gastrointestinal surgical procedures. World J Surg 2024; 48: 1902-1911
- 17 Oliver CM, Warnakulasuriya S, McGuckin D. et al. Delivery of drinking, eating and mobilising (DrEaMing) and its association with length of hospital stay after major noncardiac surgery: observational cohort study. Br J Anaesth 2022; 129: 114-126
- 18 Paternot A, Aegerter P, Martin A. et al. Screening for postoperative vital signs abnormalities, and particularly hemodynamic ones, by continuous monitoring: protocol for the Biobeat-Postop cohort study. F1000Res 2021; 10: 622
- 19 Breteler MJM, Huizinga E, van Loon K. et al. Reliability of wireless monitoring using a wearable patch sensor in high-risk surgical patients at a step-down unit in the Netherlands: a clinical validation study. BMJ Open 2018; 8: e020162
- 20 van Melzen R, Haveman ME, Schuurmann RCL. et al. Validity and reliability of wearable sensors for continuous postoperative vital signs monitoring in patients recovering from trauma surgery. Sensors 2024; 24: 6379
- 21 Weenk M, van Goor H, Frietman B. et al. Continuous monitoring of vital signs using wearable devices on the general ward: pilot study. JMIR Mhealth Uhealth 2017; 5: e91
- 22 Gerboni G, Comunale G, Chen W. et al. Prospective clinical validation of the Empatica EmbracePlus wristband as a reflective pulse oximeter. Front Digit Health 2023; 5: 1258915
- 23 Järvelä K, Takala P, Michard F. et al. Clinical evaluation of a wearable sensor for mobile monitoring of respiratory rate on hospital wards. J Clin Monit Comput 2022; 36: 81-86
- 24 Bubb CA, Weber M, Kretsch N. et al. Wearable in-ear pulse oximetry validly measures oxygen saturation between 70% and 100%: a prospective agreement study. DIGITAL HEALTH 2023; 9
- 25 Phillips M, Beach J, Cathey R. et al. Reliability and validity of the hexoskin telemetry shirt. J Sport Human Perf 2017; 5: 1-8
- 26 Schuurmans AAT, de Looff P, Nijhof KS. et al. Validity of the Empatica E4 Wristband to measure heart rate variability (HRV) parameters: a comparison to electrocardiography (ECG). J Med Syst 2020; 44: 190
- 27 Masè M, Micarelli A, Strapazzon G. Hearables: new perspectives and pitfalls of in-ear devices for physiological monitoring. A scoping review. Front Physiol 2020; 11: 568886
- 28 Pleus S, Schauer S, Jendrike N. et al. Proof of concept for a new raman-based prototype for noninvasive glucose monitoring. J Diabetes Sci Technol 2021; 15: 11-18
- 29 Pors A, Korzeniowska B, Rasmussen MT. et al. Calibration and performance of a Raman-based device for non-invasive glucose monitoring in type 2 diabetes. Sci Rep 2025; 15: 10226
- 30 Promphet N, Ummartyotin S, Ngeontae W. et al. Non-invasive wearable chemical sensors in real-life applications. Anal Chim Acta 2021; 1179: 338643
- 31 Brothers MC, DeBrosse M, Grigsby CC. et al. Achievements and challenges for real-time sensing of analytes in sweat within wearable platforms. Acc Chem Res 2019; 52: 297-306
- 32 Lee HB, Meeseepong M, Trung TQ. et al. A wearable lab-on-a-patch platform with stretchable nanostructured biosensor for non-invasive immunodetection of biomarker in sweat. Biosens Bioelectron 2020; 156: 112133
- 33 Kenny JS, Elfarnawany M, Yang Z. et al. A wireless ultrasound patch detects mild-to-moderate central hypovolemia during lower body negative pressure. J Trauma Acute Care Surg 2022; 93: S35-s40
- 34 Hu H, Huang H, Li M. et al. A wearable cardiac ultrasound imager. Nature 2023; 613: 667-675
- 35 Amelung V, Angelkorte M, Augurzky B. et al. DigitalRadar – Zwischenbericht Ergebnisse der ersten nationalen Reifegradmessung deutscher Krankenhäuser. Bonn: Bundesgesundheitsministerium; 2022. Accessed August 15, 2025 at: https://www.bundesgesundheitsministerium.de/fileadmin/user_upload/2022-09-06_Zwischenbericht_barrierefrei_lo.pdf
- 36 Lewandowska K, Weisbrot M, Cieloszyk A. et al. Impact of alarm fatigue on the work of nurses in an intensive care environment – a systematic review. Int J Environ Res Public Health 2020; 17: 8409
- 37 Leenen JPL, Dijkman EM, van Dijk JD. et al. Feasibility of continuous monitoring of vital signs in surgical patients on a general ward: an observational cohort study. BMJ Open 2021; 11: e042735
- 38 Royal College of Physicians. National Early Warning Score (NEWS): Standardising the assessment of acute-illness severity in the NHS. Report of a working party. London: Royal College of Physicians; 2012. Accessed July 24, 2025 at: https://www.rcp.ac.uk/media/a4ibkkbf/news2-final-report_0_0.pdf
- 39 Gardner-Thorpe J, Love N, Wrightson J. et al. The value of Modified Early Warning Score (MEWS) in surgical in-patients: a prospective observational study. Ann R Coll Surg Engl 2006; 88: 571-575
- 40 Sessler DI, Saugel B. Beyond „failure to rescue“: the time has come for continuous ward monitoring. Br J Anaesth 2019; 122: 304-306
- 41 Eisenkraft A, Goldstein N, Merin R. et al. Developing a real-time detection tool and an early warning score using a continuous wearable multi-parameter monitor. Front Physiol 2023; 14: 1138647
- 42 Javanbakht M, Mashayekhi A, Trevor M. et al. Cost utility analysis of continuous and intermittent versus intermittent vital signs monitoring in patients admitted to surgical wards. J Med Econ 2020; 23: 728-736
- 43 Leenen JP, Schoonhoven L, Patijn GA. Wearable wireless continuous vital signs monitoring on the general ward. Curr Opin Crit Care 2024; 30: 275-282
